精英家教网 > 高中数学 > 题目详情
2.已知α是三角形的内角,且sinα+cosα=$\frac{1}{5}$.
(1)求cos2α的值;
(2)把$\frac{1}{sinα•cosα}$用tanα表示出来,并求其值.

分析 (1)联立得$\left\{\begin{array}{l}{sinα+cosα=\frac{1}{5}}&{①}\\{si{n}^{2}α+co{s}^{2}α=1}&{②}\end{array}\right.$,整理得25sin2α-5sinα-12=0,即可解得sinα,cosα的值,进而利用二倍角的余弦函数公式即可计算得解.
(2)利用同角三角函数基本关系式可求$\frac{1}{sinα•cosα}$=$\frac{1+ta{n}^{2}α}{tanα}$,由(1)可求tanα=-$\frac{4}{3}$,即可计算得解.

解答 (本题满分为12分)
解:(1)联立得$\left\{\begin{array}{l}{sinα+cosα=\frac{1}{5}}&{①}\\{si{n}^{2}α+co{s}^{2}α=1}&{②}\end{array}\right.$,-----------(2分)
由①得cosα=$\frac{1}{5}$-sinα,将其代入②,
整理得25sin2α-5sinα-12=0.
∵α是三角形内角,
∴可得:sinα=$\frac{4}{5}$,cosα=-$\frac{3}{5}$.-----------(4分)
cos2α=2cos2α-1=2×$\frac{9}{25}$-1=-$\frac{7}{25}$.-----------(6分)
(2)$\frac{1}{sinα•cosα}$=$\frac{si{n}^{2}α+co{s}^{2}α}{sinαcosα}$=$\frac{1+ta{n}^{2}α}{tanα}$,…9分
∵tanα=-$\frac{4}{3}$,
∴$\frac{1}{sinα•cosα}$=$\frac{1+\frac{16}{9}}{-\frac{4}{3}}$=-$\frac{25}{12}$…12分

点评 本题主要考查了二倍角的余弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow{b}$=(2,-3).若($\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$),则实数m=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.24B.16+$4\sqrt{2}$C.40D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系x0y中,以0为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为$ρcos(θ-\frac{π}{3})=1$,M,N分别为C与x轴,y轴的交点.(0≤θ<2π)
(1)写出C的直角坐标方程;
(2)设线段MN的中点为P,求直线OP的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知α是第三象限角,且cosα=-$\frac{4}{5}$,则tan$\frac{α}{2}$等于(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线mx-y-m+2=0恒过定点A,若直线l过点A且与2x+y-2=0平行,则直线l的方程为(  )
A.2x+y-4=0B.2x+y+4=0C.x-2y+3=0D.x-2y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知幂函数$f(x)=({m^2}+m-1){x^{-2{m^2}+m+3}}$在(0,+∞)上为增函数,g(x)=-x2+2|x|+t,h(x)=2x-2-x
(1)求m的值,并确定f(x)的解析式;
(2)对于任意x∈[1,2],都存在x1,x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求实数t的值;
(3)若2xh(2x)+λh(x)≥0对于一切x∈[1,2]成成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线y=4x2的焦点到准线的距离是(  )
A.1B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数$f(x)=2sin(2x+\frac{π}{6})$的部分图象如图所示.
(1)写出f(x)的最小正周期及图中x0、y0的值;
(2)求f(x)在区间$[-\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

同步练习册答案