精英家教网 > 高中数学 > 题目详情

AB是椭圆数学公式(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则KAB•KOM的值为


  1. A.
    e-1
  2. B.
    1-e
  3. C.
    e2-1
  4. D.
    1-e2
C
分析:设出弦AB所在的直线方程,与椭圆方程联立消去y,根据韦达定理求得x1+x2,的表达式,根据直线方程求得y1+y2的表达式,进而根据点M为AB的中点,表示出M的横坐标和纵坐标,求得直线OM的斜率,进而代入kAB•kOM中求得结果.
解答:设直线为:y=kx+c
联立椭圆和直线 消去y得
b2x2+a2(kx+c)2-a2b2=0,即 (b2+k2a2)x2+2a2kcx+a2(c2-b2)=0
所以:x1+x2=-
所以,M点的横坐标为:Mx=(x1+x2)=-
又:y1=kx1+c
y2=kx2+c
所以y1+y2=k(x1+x2)+2c=
所以,点M的纵坐标My=(y1+y2)=
所以:Kom===-
所以:
kAB•kOM=k×(-)=-=e2-1
点评:本题主要考查了椭圆的应用.涉及弦长问题,利用弦长公式及韦达定理求解,涉及弦的中点及中点弦问题,利用差分法较为简便.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

设AB是椭圆数学公式(a>b>0)的长轴,若把长轴2010等分,过每个分点作AB的垂线,交椭圆的上半部分于P1,P2,…,P2009,F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|的值是


  1. A.
    2008a
  2. B.
    2009a
  3. C.
    2010a
  4. D.
    2011a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆数学公式的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设AB是椭圆数学公式(a>b>0)垂直于x轴的一条弦,AB所在直线的方程为x=m(|m|<a且m≠0),P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线数学公式于两点Q、R,求证数学公式

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省威海市高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知圆的方程为x2+y2=4,过点M(2,4)作圆的两条切线,切点分别为A1、A2,直线A1A2恰好经过椭圆的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设AB是椭圆(a>b>0)垂直于x轴的一条弦,AB所在直线的方程为x=m(|m|<a且m≠0),P是椭圆上异于A、B的任意一点,直线AP、BP分别交定直线于两点Q、R,求证

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省芜湖一中高二(上)数学寒假作业(必修2)(解析版) 题型:选择题

AB是椭圆(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则KAB•KOM的值为( )
A.e-1
B.1-e
C.e2-1
D.1-e2

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省皖中地区示范高中高三联考数学试卷(理科)(解析版) 题型:选择题

设AB是椭圆(a>b>0)的长轴,若把长轴2010等分,过每个分点作AB的垂线,交椭圆的上半部分于P1,P2,…,P2009,F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P2009|+|F1B|的值是( )
A.2008a
B.2009a
C.2010a
D.2011a

查看答案和解析>>

同步练习册答案