已知函数.
(1)若函数在区间上有极值,求实数的取值范围;
(2)若关于的方程有实数解,求实数的取值范围;
(3)当,时,求证:.
(1)
(2)
(3)根据数列的求和来放缩法得到不等式的证明关键是对于的运用。
【解析】
试题分析:解:(1),
当时,;当时,;
函数在区间(0,1)上为增函数;在区间为减函数 3分
当时,函数取得极大值,而函数在区间有极值.
,解得. 5分
(2)由(1)得的极大值为,令,所以当时,函数取得最小值,又因为方程有实数解,那么,即,所以实数的取值范围是:. 10分
(另解:,,
令,所以,当时,
当时,;当时,
当时,函数取得极大值为
当方程有实数解时,.)
(3)函数在区间为减函数,而,
,即
12分
即,
而,结论成立. 16分
考点:导数的运用
点评:根据导数的符号判定函数的单调性,是解决该试题的关键,同时能结合函数与方程的思想求解方程的根,属于中档题。
科目:高中数学 来源:2012-2013学年湖南省岳阳市高三第一次质量检测理科数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)若为的极值点,求实数的值;
(2)若在上为增函数,求实数的取值范围;
(3)当时,方程有实根,求实数的最大值.
查看答案和解析>>
科目:高中数学 来源:吉林省10-11学年高二下学期期末考试数学(理) 题型:解答题
已知函数.
(1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率;
(2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com