精英家教网 > 高中数学 > 题目详情

【题目】“微信运动”是手机推出的多款健康运动软件中的一款,大学生的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:02000步,(说明:“02000”表示“大于或等于0,小于2000”,以下同理),20005000步,50008000步,800010000步,1000012000步,且三种类别的人数比例为,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.

参与者

超越者

合计

20

20

合计

40

若某人一天的走路步数大于或等于8000,则被系统认定为“超越者”,否则被系统认定为“参与者”.

()若以大学生抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生的参与“微信运动”的400位微信好友中,每天走路步数在20008000的人数;

()若在大学生该天抽取的步数在800012000的微信好友中,按男女比例分层抽取9人进行身体状况调查,然后再从这9位微信好友中随机抽取4人进行采访,求其中至少有一位女性微信好友被采访的概率;

()请根据抽取的样本数据完成下面的列联表,并据此判断能否有的把握认为“认定类别”与“性别”有关?

【答案】(Ⅰ)260; (Ⅱ); (Ⅲ)见解析.

【解析】

(Ⅰ)所抽取的40人中,该天行走2000~8000步的人数:男12人,女14人,400位参与“微信运动”的微信好友中,每天行走2000~8000步的人数约为:人;

(Ⅱ)根据分层抽样可得男6人,女3人,再根据古典概型的概率公式可得;

(Ⅲ)根据列联表计算出的观测值,结合临界值表可得.

(Ⅰ)所抽取的40人中,该天行走2000~8000步的人数:男12人,

女14人,400位参与“微信运动”的微信好友中,每天行走2000~8000步的人数

约为:人;

(Ⅱ)该天抽取的步数在8000~12000的人数:男8人,女4人,

再按男女比例分层抽取9人,则其中男6人,女3人

所求概率(或)

(Ⅲ)完成列联表

参与者

超越者

合计

12

8

20

16

4

20

合计

28

12

40

计算

因为,所以没有理由认为“认定类别”与“性别”有关,

即“认定类别”与“性别”无关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知函数.

1)当时,求曲线处的切线方程:

2)当>0时,求函数的单调区间和极值;

3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数的单调性;

(2)若函数有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为100位顾客准备泡茶工具所需的时间,结果如下:

类别

铁观音

龙井

金骏眉

大红袍

顾客数(人)

20

30

40

10

时间(分钟/人)

2

3

4

6

注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.

1)求服务员恰好在第6分种开始准备第三位顾客的泡茶工具的概率;

2)用表示至第4分钟末已准备好了工具的顾客人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四面体中,,平面平面,且.

(1)证明:平面

(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=x-a>0),gx=2lnx+bx且直线y=2x2与曲线y=gx)相切.

1)若对[1+)内的一切实数x,小等式fx≥gx)恒成立,求实数a的取值范围;

2)当a=l时,求最大的正整数k,使得对[e3]e=271828是自然对数的底数)内的任意k个实数x1x2,,xk都有成立;

3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数是( ).

①在中,若,则是等腰三角形;

②在中,若 ,则

③两个向量共线的充要条件是存在实数,使

④等差数列的前项和公式是常数项为0的二次函数.

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案