精英家教网 > 高中数学 > 题目详情
以抛物线y2=4x的焦点为右焦点的椭圆,上顶点为B2,右顶点为A2,左、右焦点为F1、F2,且|
F1B2
|cos∠B2F1F2=
3
3
|
OB2
|,过点D(0,2)的直线l,斜率为k(k>0),l与椭圆交于M,N两点.
(1)求椭圆的标准方程;
(2)若M,N的中点为H,且
OH
A2B2
,求出斜率k的值;
(3)在x轴上是否存在点Q(m,0),使得以QM,QN为邻边的四边形是个菱形?如果存在,求出m的范围;否则,请说明理由.
(1)抛物线y2=4x的焦点为(1,0),∴椭圆中c=1,
∵|
F1B2
|cos∠B2F1F2=
3
3
|
OB2
|,
∴b=
3
c=
3

∴a=2,
∴椭圆的标准方程为
x2
4
+
y2
3
=1

(2)设l:y=kx+2(k>0),M(x1,y1),N(x2,y2),
直线代入椭圆方程得(4k2+3)x2+16kx+4=0,
∴△=12k2-3>0,
∵k>0,∴k>
1
2

且x1+x2=
-16k
4k2+3
,x1x2=
4
4k2+3

∴MN的中点H(
-8k
4k2+3
6
4k2+3
),
OH
A2B2

6
4k2+3
-8k
4k2+3
=
3
-0
0-2

∴k=
3
2
1
2

∴k=
3
2

(3)设在x轴上存在点Q(m,0),使得以QM,QN为邻边的四边形是个菱形,则HQ⊥MN,
6
4k2+3
-0
-8k
4k2+3
-m
•k=-1

∴m=-
2k
4k2+3
=-
2
4k+
3
k
≥-
2
2
4k•
3
k
=-
3
6

当且仅当4k=
3
k
,即k=
3
2
时取等号,
又m=-
2k
4k2+3
<0,
∴在x轴上存在点Q(m,0),使得以QM,QN为邻边的四边形是个菱形,m范围是[-
3
6
,0).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点(1,
3
2
)
到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求△F1PQ的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,右焦点为F(1,0).
(Ⅰ)求此椭圆的方程;
(Ⅱ)若过点F且倾斜角为
π
4
的直线与此椭圆相交于A,B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的离心率e=
2
且点P(3,
7
)
在双曲线C上.
(1)求双曲线C的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为2
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过抛物线y2=2px(p>0)的顶点作两条互相垂直的弦OA、OB.
(1)设OA的斜率为k,试用k表示点A、B的坐标;
(2)求弦AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,与双曲线x2-y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为(  )
A.
x2
8
+
y2
2
=1
B.
x2
12
+
y2
6
=1
C.
x2
16
+
y2
4
=1
D.
x2
20
+
y2
5
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C过点M(0,-2),N(3,1),且圆心C在直线x+2y+1=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)问是否存在满足以下两个条件的直线l:①斜率为1;②直线被圆C截得的弦为AB,以AB为直径的圆C1过原点.若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a是实数,直线2x-y+5=0与直线x-y+a+4=0的交点不在椭圆x2+2y2=11上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线AB、CD相交于O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理根据是(  )

A.同角的补角相等
B.等角的余角相等
C.同角的余角相等
D.等角的补角相等

查看答案和解析>>

同步练习册答案