精英家教网 > 高中数学 > 题目详情
15.已知a>0,b>0,ab=8,则当a的值为4$\sqrt{2}$时,${log_4}{a^2}•{log_2}(4b)$取得最大值.

分析 由和对数的运算性质和基本不等式可得${log_4}{a^2}•{log_2}(4b)$=log2a•log24b≤$(\frac{lo{g}_{2}a+lo{g}_{2}4b}{2})^{2}$,代值计算可得最大值,由等号成立可得a值.

解答 解:∵a>0,b>0,ab=8,
∴${log_4}{a^2}•{log_2}(4b)$=log2a•log24b
≤$(\frac{lo{g}_{2}a+lo{g}_{2}4b}{2})^{2}$=$(\frac{lo{g}_{2}4ab}{2})^{2}$
=$(\frac{lo{g}_{2}32}{2})^{2}$=$\frac{25}{4}$,
当且仅当log2a=log24b即a=4b时取等号,
结合ab=8可解得a=4$\sqrt{2}$,
故答案为:4$\sqrt{2}$.

点评 本题考查基本不等式求最值,涉及对数的运算性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知二次函数y=f(x)的最小值为3,且f(-1)=f(3)=11.
(1)求函数f(x)的解析式.
(2)若函数g(x)=ex-f(x)(其中e=2.71828…),那么g(x)在区间(1,2)上是否存在零点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x(ex-1)-ax2(e=2.71828…是自然对数的底数).
(1)若a=$\frac{1}{2}$,求f(x)的单调区间;
(2)若当x≥0时f(x)>0,求a的取值范围;
(3)设n∈N*,x>0,求证:ex>1+$\frac{x}{1!}$+$\frac{{x}^{2}}{2!}$+…+$\frac{{x}^{n}}{n!}$(其中ni=n×(n-1)×…×2×1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(3x+1)=x2+3x+1,则f(10)=(  )
A.30B.6C.20D.19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“若?p则q”是真命题,则p是?q的(  )条件.
A.充分B.充分非必要C.必要D.必要非充分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c分别为△ABC三个内角A,B,C的对边,$acosC+\sqrt{3}asinC-b-c=0$
(Ⅰ)求A;
(Ⅱ)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,在其定义域内既是奇函数,又是减函数的是(  )
A.$f(x)=\frac{1}{x}$B.$f(x)=\sqrt{-x}$C.f(x)=2-x-2xD.$f(x)={log_{\frac{1}{2}}}|x|$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\sqrt{2x+3}$+$\frac{1}{x}$的定义域是(  )
A.{x|x≥-$\frac{3}{2}$}B.{x|x≥-$\frac{3}{2}$且x≠0}C.{x|x≤$\frac{3}{2}$}D.{x|x≤$\frac{3}{2}$且x≠0}

查看答案和解析>>

同步练习册答案