精英家教网 > 高中数学 > 题目详情
如图,正三角形PAD所在平面与正方形ABCD所在平面互相垂直,0为正方形ABCD的中心,M为正方形ABCD内一点,且满足MP=MC,则点M的轨迹为(  )
分析:在空间中,过线段PC中点,且垂直线段PC的平面上的点到P,C两点的距离相等,此平面与平面ABCD相交,两平面有一条公共直线.
解答:解:在空间中,存在过线段PC中点且垂直线段PC的平面,平面上点到P,C两点的距离相等,记此平面为α
平面α与平面ABCD有一个公共点,则它们有且只有一条过该点的公共直线.
又由于OC=OD,所以该中心不过正方形中心O
故选C.
点评:本题是轨迹问题与空间线面关系相结合的题目,有助于学生提高学生的空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB中点,过A、N、D三点的平面交PC于M.
(1)求证:DP∥平面ANC;
(2)求证:M是PC中点;
(3)求证:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、如图所示,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD、点M为平面ABCD内的一个动点,且满足MP=MC、则点M在正方形ABCD内的轨迹为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,正三角形PAD所在平面与正方形ABCD所在平面互相垂直,0为正方形ABCD的中心,M为正方形ABCD内一点,且满足MP=MC,则点M的轨迹为


  1. A.
  2. B.
  3. C.
  4. D.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省西安市八校高三5月联考数学试卷(理科)(解析版) 题型:选择题

如图,正三角形PAD所在平面与正方形ABCD所在平面互相垂直,0为正方形ABCD的中心,M为正方形ABCD内一点,且满足MP=MC,则点M的轨迹为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案