精英家教网 > 高中数学 > 题目详情
7.如果a和b是异面直线,直线a∥c,那么直线b与c的位置关系是(  )
A.相交B.异面C.平行D.相交或异面

分析 两条直线的位置关系有三种:相交,平行,异面.由于a,b是两条异面直线,直线c∥a则c有可能与b相交且与a平行,但是c不可能与b平行,要说明这一点采用反证比较简单.

解答 解:∵a,b是两条异面直线,直线c∥a
∴过b任一点可作与a平行的直线c,此时c与b相交.另外c与b不可能平行理由如下:
若c∥b则由c∥a可得到a∥b这与a,b是两条异面直线矛盾,故c与b异面.
故选:D.

点评 此题考查了空间中两直线的位置关系:相交,平行,异面.做题中我们可采用逐个验证再结合反证法的使用即可达到目的,这也不失为常用的解题方法!

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则b+c值为(  )
A.0B.1C.-1D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}$的定义域为[-3,3].
(1)判断函数f(x)的单调性,并用定义给出证明;
(2)若实数m满足f(m-1)<f(1-2m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\frac{1+2lnx}{{x}^{2}}$.
(1)求f(x)的单调区间;
(2)令g(x)=ax2-2lnx,则g(x)=1时有两个不同的根,求a的取值范围;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)-f(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是等差数列,公差d不为0,Sn是其前n项和,若a3,a4,a8成等比数列,则下列四个结论
①a1d<0;②dS4<0;③S8=-20S4;④等比数列a3,a4,a8的公比为4.其中正确的是①②④.(请把正确结论的序号全部填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}中,a3=9,a5=17,记数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和为Sn,若S2n+1-Sn≤$\frac{m}{15},({m∈Z})$,对任意的n∈N*成立,则整数m的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个人打靶时连续射击三次,与事件“至多有两次中靶”互斥的事件是(  )
A.至少有两次中靶B.三次都中靶C.只有一次中靶D.三次都不中靶

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为等比数列,其前n项和为Sn,且S1,S2的等差中项为S3,若8(a1+a3)=-5.
(1)求数列[an]的通项公式;
(2)记Rn=|$\frac{1}{a_1}|+|\frac{2}{a_2}|+|\frac{3}{a_3}|+…+|\frac{n}{a_n}$|,对于任意的n≥2,n∈N*,不等式m(Rn-n-1)≥(n-1)2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a,b∈R,集合{a,1}={0,a+b},则a-b=-1.

查看答案和解析>>

同步练习册答案