精英家教网 > 高中数学 > 题目详情
设双曲线以椭圆
x2
25
+
y2
9
=1长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为(  )
A.±2B.±
4
3
C.±
1
2
D.±
3
4
依题意可知椭圆的长轴的端点为(5,0)(-5,0),c=
a2-b2
=4
∴焦点坐标为(4,0)(-4,0)
设双曲线方程为
x2
a2
-
y2
b2
=1

则有
a2+b2=25
a2
c
=4
解得:a=2
5
,b=
5

∴双曲线的渐近线的斜率为±
b
a
1
2

故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C的中心在原点,并以双曲线
y2
4
-
x2
2
=1
的焦点为焦点,以抛物线x2=-6
6
y
的准线到原点的距离为
a2
c

(1)求椭圆C的方程;
(2)设直线l:y=kx+2(k≠0)与椭圆C相交于A、B两点,使A、B两点关于直线l′:y=mx+1(m≠0)对称,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C的中心在原点,并以双曲线
y2
4
-
x2
2
=1
的焦点为焦点,以抛物线x2=-6
6
y
的准线到原点的距离为
a2
c

(1)求椭圆C的方程;
(2)设直线l:y=kx+2(k≠0)与椭圆C相交于A、B两点,使A、B两点关于直线l′:y=mx+1(m≠0)对称,求k的值.

查看答案和解析>>

同步练习册答案