精英家教网 > 高中数学 > 题目详情
(2012•杭州一模)在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
1
2
)

(1)求an
(2)令bn=
Sn
2n+1
,求数列{bn}的前项和Tn
分析:(1)当n≥2时,由an=Sn-Sn-1,代入已知整理可得Sn-1-Sn=2SnSn-1,即
1
Sn
-
1
Sn-1
=2
,结合等差数列的通项公式可求Sn,进而可求当n≥2时an,在对n=1时求a1,从而可求an
(2)由于bn=
Sn
2n+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,考虑利用裂项求和即可
解答:解:(1)当n≥2时,an=Sn-Sn-1
Sn2=(Sn-Sn-1)(Sn-
1
2
)=Sn2-
1
2
Sn-SnSn-1+
1
2
Sn-1

∴Sn-1-Sn=2SnSn-1
1
Sn
-
1
Sn-1
=2

即数列{
1
Sn
}
为等差数列,S1=a1=1,
1
Sn
=
1
S1
+(n-1)×2=2n-1

Sn=
1
2n-1
,…(4分)
当n≥2时,an=sn-sn-1=
1
2n-1
-
1
2n-3
=
-2
(2n-1)(2n-3)

an
1,n=1
-2
(2n-1)(2n-3)
,n≥2
…(8分)
(2)bn=
Sn
2n+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1
点评:本题主要考查了利用递推公式an=
S1,n=1
Sn-Sn-1,n≥2
求解数列的通项公式,要注意对n=1的检验是做题中容易漏掉的知识点,还考查了裂项求和方法的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•杭州一模)已知x>1,则函数f(x)=x+
1
x-1
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州一模)函数f(x)在定义域R内可导,若f(x)=f(2-x),且(x-1)f′(x)<0,若a=f(0),b=f(
1
2
),c=f(3),则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州一模)在△ABC中,a,b,c分别为内角A,B,C的对边,且2cos(B-C)=4sinB•sinC-1.
(1)求A;
(2)若a=3,sin
B
2
=
1
3
,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州一模)2011年11月9日,《杭州市公共租赁住房建设租赁管理暂行办法》公布.《办法》规定:每位申请人根据意愿,只能选择申请一个片区的公租房.假定申请任一个片区的公租房都是等可能的.杭州市公租房主要分布在“江干、西湖、下沙”三大片区.现有4位申请人甲、乙、丙、丁欲申请公租房,试求:
(Ⅰ)没有人申请“下沙”片区的概率;
(Ⅱ)“江干、西湖、下沙”三大片区均有人申请的概率.

查看答案和解析>>

同步练习册答案