分析 由题意,四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大,以四个小球球心为顶点的正四面体棱长为2r,该正四面体的中心(外接球球心)就是大球的球心,求出正四面体的外接球半径,即可求得结论.
解答 解:由题意,四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大.
以四个小球球心为顶点的正四面体棱长为2r,该正四面体的中心(外接球球心)就是大球的球心,
该正四面体的高为$\sqrt{4{r}^{2}-(\frac{2\sqrt{3}r}{3})^{2}}$=$\frac{2\sqrt{6}}{3}$r,
设正四面体的外接球半径为x,则x2=($\frac{2\sqrt{6}}{3}$r-x)2+($\frac{2\sqrt{3}}{3}$r)2,
∴x=$\frac{\sqrt{6}}{2}$r,
∴1=$\frac{\sqrt{6}}{2}$r+r,
∴r=$\frac{\sqrt{6}}{3+\sqrt{6}}$=$\sqrt{6}$-2.
故答案为:$\sqrt{6}$-2.
点评 本题考查点、线、面距离的计算,考查学生分析解决问题的能力,确定四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大是关键.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{20}$ | B. | $\frac{13}{100}$ | C. | $\frac{3}{25}$ | D. | $\frac{7}{50}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-tanx | B. | y=cos(2x-$\frac{π}{2}$) | C. | y=sin2x+cos2x | D. | y=2cos2x-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{6}$] | B. | (0,$\frac{π}{3}$] | C. | (0,$\frac{π}{2}$] | D. | [$\frac{π}{3}$,$\frac{2π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com