已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范围.
(1) (2) [1,+∞)
【解析】
试题分析:(1)∵|x+1|≥2|x|?x2+2x+1≥4x2?-≤x≤1,
∴不等式f(x)≥g(x)的解集为.
(2)若任意x∈R, |x+1|2|x|+a恒成立,即任意x∈R, |x+1|-2|x|a恒成立,
令φ(x)=|x+1|-2|x|,则a φ(x)max,
又φ(x)=
当x≥0时,φ(x)≤1;当-1≤x<0时,-2 ≤φ(x)<1;当x<-1时,φ(x)<-2.
综上可得:φ(x)≤1,
∴a1,即实数a的取值范围为[1,+∞).
考点:带绝对值的函数;函数的最值及其几何意义;函数恒成立问题.
点评:本题主要考查绝对值不等式的解法,求函数的最小值,函数的恒成立问题,属于中档题.
科目:高中数学 来源:2011届南京市金陵中学高三第四次模拟考试数学试题 题型:解答题
(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期开学考试数学卷 题型:选择题
已知函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则f(1)的范围是( )
A.f(1)≥25 B.f(1)=25 C.f(1)≤25 D.f(1)>25
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖北省天门市高三天5月模拟文科数学试题 题型:填空题
已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:
(1)方程f [f (x)]=x一定无实根;
(2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x0,使f [f (x0)]>x0;
(4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;
正确的序号有 .
查看答案和解析>>
科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:选择题
已知函数f(x)=|lg(x-1)|-()x有两个零点x1,x2,则有
A.x1x2<1 B.x1x2<x1+x2
C.x1x2=x1+x2 D.x1x2>x1+x2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com