已知函数
.
(Ⅰ)若曲线
在点
处与直线
相切,求
与
的值.
(Ⅱ)若曲线
与直线
有两个不同的交点,求
的取值范围.
(Ⅰ)求两个参数,需要建立两个方程。切点在切线上建立一个,利用导数的几何意义建立另一个,联立求解。(Ⅱ)利用导数分析曲线
的走势,数形结合求解。
【解析】因为
,所以
.
(Ⅰ)因为曲线
在点
处与直线
相切,
所以
,
,
解得
.
(Ⅱ)由
,得
.
和
的情况如下:
|
|
|
0 |
|
|
|
- |
0 |
+ |
|
|
|
1 |
|
所以函数
在区间
上单调递减,在区间
单调递增,
是函数的最小值.
当
时,曲线
与直线
最多只有一个交点.
当
时,
,
,
所以,存在
,使得
.
由于函数
在区间
和
均单调,所以
时,曲线
与直线
有且仅有两个交点.
【考点定位】本题考查导数的计算、切线方程、导数的应用,故考查了运算求解能力.讨论直线和曲线的交点个数,故考查了分类讨论思想的应用.
科目:高中数学 来源: 题型:
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
查看答案和解析>>
科目:高中数学 来源:2014届黑龙江省海林市高二下学期期中考试理科数学试卷(解析版) 题型:解答题
已知函数
,![]()
(1)若曲线
与曲线
在它们的交点(1,c)处具有公共切线,求
,
的值;
(2)当
,
时,若函数
在区间[
,2]上的最大值为28,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江苏省如东县高三12月四校联考文科数学试卷(解析版) 题型:解答题
(本小题满分16分)
已知函数
,
(1)若
在
上的最大值为
,求实数
的值;
(2)若对任意
,都有
恒成立,求实数
的取值范围;
(3)在(1)的条件下,设
,对任意给定的正实数
,曲线
上是否存在两点
,使得
是以
(
为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在
轴上?请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com