精英家教网 > 高中数学 > 题目详情
5.已知函数$f(x)=\frac{1}{4}{x^2}-\frac{1}{a}x+ln(x+a)$,其中常数a>0.
(1)讨论函数f(x)的单调性;
(2)已知$0<a<\frac{1}{2}$,f'(x)表示f(x)的导数,若x1,x2∈(-a,a),x1≠x2,且满足f′(x1)+f′(x2)=0,试比较f′(x1+x2)与f′(0)的大小,并加以证明.

分析 (1)求出函数的导数,通过讨论a的范围,确定函数的单调区间即可;
(2)令g(x)=f′(x),求出g(x)的导数,得到g(x)的单调性,得到f′(x1+x2)的表达式,通过换元法求出其最大值,从而判断出与f′(0)的大小即可.

解答 解:(1)函数f(x)的定义域为(-a,+∞),
$f'(x)=\frac{1}{2}x-\frac{1}{a}+\frac{1}{x+a}=\frac{{x(ax-2+{a^2})}}{2a(x+a)}(x>-a,a>0)$
由f'(x)=0,得x1=0,${x_2}=\frac{{2-{a^2}}}{a}$,…(2分)
当$a=\sqrt{2}$时,$f'(x)=\frac{x^2}{{2(x+\sqrt{2})}}≥0$,
所以f(x)在$(-\sqrt{2},+∞)$上为增函数;…(3分)
当$a>\sqrt{2}$时,$-a<{x_2}=\frac{{2-{a^2}}}{a}<0$,
所以f(x)在(0,+∞),$(-a,\frac{{2-{a^2}}}{a})$上为增函数;在$(\frac{{2-{a^2}}}{a},0)$上为减函数;…(4分)
当$0<a<\sqrt{2}$时,$\frac{{2-{a^2}}}{a}>0$,
所以f(x)在$(\frac{{2-{a^2}}}{a},+∞)$,(-a,0)上为增函数;在$(0,\frac{{2-{a^2}}}{a})$上为减函数;…(5分)
(2)令$g(x)=f'(x)=\frac{1}{2}x-\frac{1}{a}+\frac{1}{x+a}(-a<x<a)$
则$g'(x)=\frac{1}{2}-\frac{1}{{{{(x+a)}^2}}}=\frac{{{{(x+a)}^2}-2}}{{2{{(x+a)}^2}}}$,
∵-a<x<a,
∴0<x+a<2a,
∴${(x+a)^2}<4{a^2}<1(∵0<a<\frac{1}{2})$,
∴g'(x)<0,
∴g(x)在(-a,a)上为减函数,即f'(x)在(-a,a)上为减函数,
以题意,不妨设x1<x2,又因为f'(0)=0,f'(x1)+f'(x2)=0,…(8分)
所以,-a<x1<0<x2<a,所以,0<x1+a<a,且-a<x1+x2<a,
由f'(x1)+f'(x2)=0,得$\frac{{{x_1}+{x_2}}}{2}=\frac{2}{a}-\frac{1}{{{x_1}+a}}-\frac{1}{{{x_2}+a}}$,
∴$f'({x_1}+{x_2})=\frac{{{x_1}+{x_2}}}{2}-\frac{1}{a}+\frac{1}{{{x_1}+{x_2}+a}}$=$\frac{1}{a}+\frac{1}{{{x_1}+{x_2}+a}}-\frac{1}{{{x_1}+a}}-\frac{1}{{{x_2}+a}}$,…(10分)
令t=x1+a,$h(t)=\frac{1}{a}+\frac{1}{{t+{x_2}}}-\frac{1}{t}-\frac{1}{{{x_2}+a}}(0<t<a)$
则$h'(t)=-\frac{1}{{{{(t+{x_2})}^2}}}+\frac{1}{t^2}=\frac{{{{(t+{x_2})}^2}-{t^2}}}{{{{(t+{x_2})}^2}•{t^2}}}=\frac{{(2t+{x_2}){x_2}}}{{{{(t+{x_2})}^2}•{t^2}}}>0$,…(11分)
所以,h(t)在(0,a)内为增函数,又因为t=x1+a∈(0,a)
所以,h(t)<h(a)═0,
即:$\frac{1}{a}+\frac{1}{{{x_1}+{x_2}+a}}-\frac{1}{{{x_1}+a}}-\frac{1}{{{x_2}+a}}<0$
所以,f'(x1)+f'(x2)<f'(0).…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用,分类讨论思想以及换元思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{{\begin{array}{l}{a+lnx,x>0}\\{g(x)-x,x<0}\end{array}}$为奇函数,且g(-e)=0,则a=-1-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{b}{x}$-ax+(1+a)lnx,a∈R,且y=f(x)在x=1处的切线垂直于y轴.
(1)若a=-1,求y=f(x)在x=$\frac{1}{2}$处的切线方程;
(2)讨论f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b为实数,i为虚数单位,且满足a+bi=(1+2i)(3-i)+$\frac{1+i}{1-i}$,则a-b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数y=-(n+1)x2+2(1-n)x+1在-1≤x≤1时,y随着x的增大而增大,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=x3-ax在[1,2]上是单调增函数,则a的最大值是(  )
A.0B.1C.3D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB是⊙O的直径,AC,DE分别是⊙O的切线,切点分别为A,E,BC交⊙O于E.
(Ⅰ)证明:D为AC的中点;
(Ⅱ)若⊙O的半径为$\sqrt{3}$,CE=1,求DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥A-BCDE中,△ABC是正三角形,四边形BCDE是矩形,且平面ABC⊥平面BCDE,AB=2,AD=4.
(1)若点G是AE的中点,求证:AC∥平面BDG;
(2)试问点F在线段AB上什么位置时,二面角B-CE-F的余弦值为$\frac{2\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ex-1.
(1)求证:f(x)≥x;
(2)若存在x0>0,使得对任意的x∈(0,x0),恒有kf(x)<x,求k的范围;
(3)若存在t>0,使得对任意的x∈(0,t),恒有|kf(x)-x|<f2(x),求k的范围.

查看答案和解析>>

同步练习册答案