精英家教网 > 高中数学 > 题目详情
20.已知实数a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)(  )
A.仅一个零点且位于区间(c,+∞)内
B.仅一个零点且位于区间(-∞,a)内
C.有两个零点且分别位于区间(a,b)和(b,c)内
D.有两个零点且分别位于区间(-∞,a)和(c,+∞)内

分析 根据函数的零点定理判断即可.

解答 解:因为f(a)=(a-b)(a-c)>0
f(c)=(b-c)(b-a)<0,
所以在(a,b)及(b,c)区间都至少各有一个零点.
即两个零点分别位于(a,b)及(b,c),
故选:C.

点评 本题考察了函数零点的判定定理,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点的坐标为(3,y1)时,△AEF为正三角形,则p为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}中,a1=1,an+1=2an+1.
(1)求a2,a3,a4的值;
(2)若bn=an+1,求证:数列{bn}是等比数列;
(3)求数列{an}得通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知两点A(-1,0),B(2,1),直线l过点P(0,-1)且与线段AB有公共点,则直线l的斜率k的取值范围是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,0)∪(0,1]D.[-1,0)∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示的程序框图的功能是输出a,b,c中的最小数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=a(1-2|x-$\frac{1}{2}$|),a为常数且a>0,
(Ⅰ)求函数f(x)的图象与x轴围成的三角形的面积;
(Ⅱ)若x0满足f(f(x0))=x0,且f(x0)≠x0,则称x0为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n行(n≥3)从右向左的第3个数为$\frac{{{n^2}+n-4}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.命题P:关于x的不等式x2+ax+1>0对一切x∈R恒成立,命题q:方程$\frac{{x}^{2}}{a-4}$+$\frac{{y}^{2}}{a+2}$=1表示双曲线,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2为其左、右焦点,P是椭圆C上一点,PF2⊥x轴,且sin∠PF1F2=$\frac{3}{5}$.
(Ⅰ)求椭圆C的离心率e;
(Ⅱ)过焦点F2的直线l与椭圆C相交于点M、N,若△F1MN面积的最大值为6,求椭圆C的方程.

查看答案和解析>>

同步练习册答案