精英家教网 > 高中数学 > 题目详情
设F1和F2是双曲线
x24
-y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是
 
分析:设|PF1|=x,|PF2|=y,根据根据双曲线性质可知x-y的值,再根据∠F1PF2=90°,求得x2+y2的值,进而根据2xy=x2+y2-(x-y)2求得xy,进而可求得△F1PF2的面积.
解答:解:设|PF1|=x,|PF2|=y,(x>y)
根据双曲线性质可知x-y=4,
∵∠F1PF2=90°,
∴x2+y2=20
∴2xy=x2+y2-(x-y)2=4
∴xy=2
∴△F1PF2的面积为
1
2
xy=1
故答案为:1.
点评:本题主要考查了双曲线的简单性质.要灵活运用双曲线的定义及焦距、实轴、虚轴等之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的方程是16x2-9y2=144.
(1)求这双曲线的焦点坐标、离心率和渐近线方程;
(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|•|PF2|=32,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1和F2是双曲线-y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是(  )

A.1

B.

C.2

D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

F1F2是双曲线-y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是(  )

A.1                       B.                  C.2                       D.

查看答案和解析>>

科目:高中数学 来源: 题型:

F1F2是双曲线-y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是(  )

A.1                       B.                  C.2                       D.

查看答案和解析>>

同步练习册答案