精英家教网 > 高中数学 > 题目详情
以双曲线
x2
4
-
y2
12
=1的焦点为顶点,顶点为焦点的椭圆方程是
 
分析:先求出双曲线的顶点和焦点,从而得到椭圆的焦点和顶点,进而得到椭圆方程.
解答:解:双曲线
x2
4
-
y2
12
=1
的顶点为(2,0)和(-2,0),焦点为(-4,0)和(4,0).
∴椭圆的焦点坐标是(2,0)和(-2,0),顶点为(-4,0)和(4,0).
∴椭圆方程为
x2
16
+
y2
12
=1.
故答案为:
x2
16
+
y2
12
=1.
点评:本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以双曲线-3x2+y2=12的焦点为顶点,顶点为焦点的椭圆的方程是(  )
A、
x2
16
+
y2
12
=1
B、
x2
16
+
y2
4
=1
C、
x2
12
+
y2
16
=1
D、
x2
4
+
y2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

若以双曲线
x24
-y2=1的右顶点为圆心的圆恰与双曲线的渐近线相切,则圆的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以双曲线
x2
4
-y2=1
的中心为顶点,左焦点为焦点的抛物线方程是(  )
A、y2=-2
3
x
B、y2=-2
5
x
C、y2=-4
3
x
D、y2=-4
5
x

查看答案和解析>>

科目:高中数学 来源: 题型:

以双曲线
x2
4
-
y2
5
=1
的左焦点为焦点的抛物线标准方程是
y2=-12x
y2=-12x

查看答案和解析>>

科目:高中数学 来源: 题型:

求以椭圆
x24
+y2=1
的焦点为顶点,以椭圆的顶点为焦点的双曲线方程.

查看答案和解析>>

同步练习册答案