精英家教网 > 高中数学 > 题目详情

【题目】已知是定义在上的奇函数,当时,,则不等式的解集为(

A. B.

C. D.

【答案】B

【解析】f(x)是定义在[﹣4,4]上的奇函数,

当x=0时,f(0)=0,

下面求x∈[﹣4,0)时的f(x)的表达式,

设x∈[﹣4,0),则﹣x∈(0,4],

当x0时,f(x)=﹣x2+4x,

∴f(﹣x)=﹣(﹣x)2+4(﹣x)=﹣x2﹣4x,

又f(x)是定义在[﹣4,4]上的奇函数,

∴f(x)=﹣f(﹣x)=x2+4x,

∴f(x)=

令f(x)=0,解得x=﹣4或0或4,

当x∈[﹣4,0]时,不等式f[f(x)]<f(x),

即(x2+4x)2+4(x2+4x)<x2+4x,

化简得(x2+4x)2+3(x2+4x)<0,

解得x∈(﹣4,﹣3)∪(﹣1,0);

当x∈(0,4]时,不等式f[f(x)]<f(x),

即﹣(﹣x2+4x)2+4(﹣x2+4x)<﹣x2+4x,

化简得﹣(﹣x2+4x)2+3(﹣x2+4x)<0,

解得x∈(1,3);

综上所述,x∈(﹣4,﹣3)∪(﹣1,0)∪(1,3),

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为R
(1)当a=2时,求函数f(x)的值域
(2)若函数f(x)是奇函数,①求a的值;②解不等式f(3﹣m)+f(3﹣m2)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图11所示,三棱台中, 分别为的中点.

(1)求证: 平面

(2)若 ,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线, 是三个不同的平面,下面说法正确的是

A. B.

C. D. ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的方程x2﹣ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,若p∧q是真命题,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.

(1)求曲线的轨迹方程;

(2)若与曲线交于不同的两点,且为坐标原点),求直线的斜率;

(3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 判断函数的单调性并给出证明;

(2)若存在实数使函数是奇函数,求

(3)对于(2)中的,若,当时恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.

(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;

.

(2)设的定义域为,已知的一个等值域变换,且函数的定义域为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 , 抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的标准方程;
(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足 ?若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案