精英家教网 > 高中数学 > 题目详情
函数y=
1x-1
的图象与函数y=2sinπx(-2≤x≤4)的图象所有交点的横坐标之和等于
4
4
分析:y1=
1
x-1
的图象由奇函数y =
1
x
的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx的图象的一个对称中心也是点(1,0),故交点个数为偶数,且对称点的横坐标之和为2
解答:解:函数y1=
1
x-1
y2
=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象,
当1<x≤4时,y1
1
3

而函数y2在(1,4)上出现1.5个周期的图象,在(2,
5
2
)
上是单调增且为正数函数,
y2在(1,4)上出现1.5个周期的图象,在(
5
2
,3)
上是单调减且为正数,
∴函数y2在x=
5
2
处取最大值为2≥
2
3

而函数y2在(1,2)、(3,4)上为负数与y1的图象没有交点,
所以两个函数图象在(1,4)上有两个交点(图中C、D),
根据它们有公共的对称中心(1,0),可得在区间(-2,1)上也有两个交点(图中A、B),
并且:xA+xD=xB+xC=2,故所求的横坐标之和为4,
故答案为:4.
点评:本题考查函数的零点与方程的根的关系,考查数形结合思想,发现两个图象公共的对称中心是解决本题的入口,讨论函数y2=2sinπx的单调性找出区间(1,4)上的交点个数是本题的难点所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把函数y=
1
x+1
的图象右移一个单位所得图象记为C,则C关于原点对称的图象的函数表达式为(  )
A、y=
1
x-2
B、y=
1
x
C、y=-
1
x
D、y=
1
2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
x-1
的图象与函数y=2sinπx(-2≤x≤4)的图象所有交点的横坐标之和等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-
1
x-1
的图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-
1
x+1
的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=
1
x+1
的图象沿x轴向右平移2个单位,再将所得图象关于y轴对称后所得图象的解析式为
y=-
1
x+1
y=-
1
x+1

查看答案和解析>>

同步练习册答案