【题目】2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:
男生测试情况:
抽样情况 | 病残免试 | 不合格 | 合格 | 良好 | 优秀 |
人数 | 5 | 10 | 15 | 47 |
|
女生测试情况
抽样情况 | 病残免试 | 不合格 | 合格 | 良好 | 优秀 |
人数 | 2 | 3 | 10 |
| 2 |
(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;
(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?
男性 | 女性 | 总计 | |
体育达人 | |||
非体育达人 | |||
总计 |
临界值表:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:(
,其中
)
【答案】(1)
(2)在犯错误的概率不超过0.010的前提下可以认为“是否为‘体育达人’与性别无关”
【解析】试题分析:
按分层抽样男生应抽取
名,女生应抽取
名,从而得到
,
,从而得到
名任意选
名总的基本事件,利用古典概型及其概率的计算公式,即可求解概率;
列出列联表,利用对立性检验的公式,求得
,即可得到结论。
解析:(1)按分层抽样男生应抽取80名,女生应抽取20名.
, ![]()
抽取的100名且测试等级为优秀的学生中有三位男生,设为
,
,
;
两位女生设为
,
.从5名任意选2名,总的基本事件有
,
,
,
,
,
,
,
,
,共10个.
设“选出的两名学生恰好是一男一女为事件
”.
则事件包含的基本事件有
,
,
,
,
,
共6个.
(2)
列联表如下表:
男生 | 女生 | 总计 | |
体育达人 | 50 | 5 | 55 |
非体育达人 | 30 | 15 | 45 |
总计 | 80 | 20 | 100 |
则![]()
且
.
所以在犯错误的概率不超过0.010的前提下可以认为“是否为‘体育达人’与性别无关”.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知曲线C1的参数方程为:
(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为:
,直线l的直角坐标方程为
.
(l)求曲线C1和直线l的极坐标方程;
(2)已知直线l分别与曲线C1、曲线C2交异于极点的A,B,若A,B的极径分别为ρ1,ρ2,求|ρ2﹣ρ1|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(导学号:05856330)
已知等比数列{an}的前n项和为Sn,且a3=4,a3,a4+2,a5成等差数列.数列{
}的前n项和为Tn.
(Ⅰ)求数列{an}的通项公式以及前n项和Sn的表达式;
(Ⅱ)若Tn<m对任意n∈N*恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点,
在此几何体中,给出下面四个结论:
①直线BE与直线CF异面; ②直线BE与直线AF异面;
③直线EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正确的有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数f(x)=
x3-x满足:对于任意的x1,x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,则a的取值范围是( )
A. [-
,
]
B. [-
,
]
C. (-∞,-
]∪[
,+∞)
D. (-∞,-
]∪[
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线
的焦点为
,椭圆
的中心在原点,
为其右焦点,点
为曲线
和
在第一象限的交点,且
.
![]()
(1)求椭圆
的标准方程;
(2)设
为抛物线
上的两个动点,且使得线段
的中点
在直线
上,
为定点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,向高为H的水瓶A,B,C,D同时以等速注水,注满为止;
![]()
(1)若水深h与注水时间t的函数图象是下图中的a,则水瓶的形状是________;
(2)若水量ν与水深h的函数图像是下图中的b,则水瓶的形状是________;
(3)若水深h与注水时间t的函数图象是下图中的c,则水瓶的形状是________;
(4)若注水时间t与水深h的函数图象是下图中的d,则水瓶的形状是________。
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面是菱形的四棱锥
中,
平面
,
,点
分别为
的中点,设直线
与平面
交于点
.
![]()
(1)已知平面
平面
,求证:
.
(2)求直线
与平面
所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com