精英家教网 > 高中数学 > 题目详情
已知圆C经过直线2x-y+2=0与坐标轴的两个交点,又经过抛物线y2=8x的焦点,则圆C的方程为   
【答案】分析:求出抛物线的焦点坐标,设出圆的一般方程为x2+y2+Dx+Ey+F=0,把三个点的坐标分别代入即可得到关于D,E及F的三元一次方程组,求出方程组的解即可得到D,E及F的值,进而确定出圆的方程.
解答:解:抛物线y2=8x的焦点为F(2,0),直线2x-y+2=0与坐标轴的两个交点坐标分别为A(-1,0),B(0,2),
设所求圆的方程为x2+y2+Dx+Ey+F=0.
将A、B、F三点的坐标代入圆的方程得:
解得
于是所求圆的方程为x2+y2-x-y-2=0.
.(12分)
故答案为:
点评:本题考查圆的方程,考查抛物线的简单性质,解题的关键是利用待定系数法求圆的方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•揭阳一模)已知圆C经过直线2x-y+2=0与坐标轴的两个交点,又经过抛物线y2=8x的焦点,则圆C的方程为
(x-
1
2
)
2
+(y-
1
2
)
2
=
5
2
(x-
1
2
)
2
+(y-
1
2
)
2
=
5
2

查看答案和解析>>

科目:高中数学 来源:2012年江苏省南京市高考数学二模试卷(解析版) 题型:填空题

已知圆C经过直线2x-y+2=0与坐标轴的两个交点,又经过抛物线y2=8x的焦点,则圆C的方程为   

查看答案和解析>>

科目:高中数学 来源:2012年安徽省蚌埠二中高考数学一模试卷(文科)(解析版) 题型:填空题

已知圆C经过直线2x-y+2=0与坐标轴的两个交点,又经过抛物线y2=8x的焦点,则圆C的方程为   

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市育才中学高三(下)3月段考数学试卷(理科)(解析版) 题型:解答题

已知圆C经过直线2x-y+2=0与坐标轴的两个交点,又经过抛物线y2=8x的焦点,则圆C的方程为   

查看答案和解析>>

同步练习册答案