(1)都抽到某一指定号码;
(2)恰有一次抽到某一指定号码;
(3)至少有一次抽到某一指定号码.
解:(1)记“第1次抽奖抽到某一指定号码”为事件A,“第2次抽奖抽到某一指定号码”为事件B,则“两次抽奖都抽到某一指定号码”就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立,于是由独立性可得,两次抽奖都抽到某一指定号码的概率P(AB)=P(A)P(B)=0.05×0.05=0.002 5.
(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A
)∪(
B)表示,由于事件AB与AB互斥,根据概率的加法公式和相互独立事件的定义,所求得的概率为
P(A
)+P(
B)=P(A)P(
)+P(
)P(B)=0.05×(1-0.05)+(1-0.05)×0.05=0.095.
(3)“两次抽奖至少有一次抽到某一指定号码”可以用(AB)∪(AB)∪(AB)表示.由于事件AB,A
,
B两两互斥,根据概率的加法公式和相互独立事件定义,所求的概率为
P(AB)+P(A
)+P(
B)=0.002 5+0.095=0.097 5.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)都抽到某一指定号码;
(2)恰有一次抽到某一指定号码;
(3)至少有一次抽到某一指定号码.
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年黑龙江省哈尔滨32中高二(下)期末数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com