如图,在直四棱柱中,底面为平行四边形,且,,,为的中点.
(1) 证明:∥平面;
(2)求直线与平面所成角的正弦值.
(1)利用线线平行证明线面平行;(2)
解析试题分析:(1) 证明:连接,
因为,,所以∥,
因为面,面,所以∥面.
(2)作,分别令为
轴,轴,轴,建立坐标系如图
因为,,所以,、
所以,,,,
设面的法向量为,所以,
化简得,令,则.
设,则
设直线与面所成角为,则
所以,则直线与面所成角的正弦值为 .
考点:本题考查了空间中的线面关系及角的求法
点评:(1)线面关系的证明主要是应用线面平行与垂直的判定定理或性质,具体问题中要是能够根据题意适当做辅助线;(2)空间中角的计算,总是通过一定的手段将其转化为一个平面内的角,并把它置于一个平面图形,而且是一个三角形的内角来解决,而这种转化就是利用直线与平面的平行与垂直来实现的
科目:高中数学 来源: 题型:解答题
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明B1C1⊥CE;
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面平面,是等腰直角三角形,,四边形是直角梯形,,,,点、分别为、的中点.
(1)求证:平面;
(2)求直线和平面所成角的正弦值;
(3)能否在上找到一点,使得平面?若能,请指出点的位置,并加以证明;若不能,请说明理由 .
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
四棱锥中,底面为平行四边形,侧面面,已知
(Ⅰ)求证:;
(Ⅱ)在SB上选取点P,使SD//平面PAC ,并证明;
(Ⅲ)求直线与面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,三棱锥P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的长;
(II)求二面角P—AB—C的大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com