精英家教网 > 高中数学 > 题目详情
7.已知数列{an}为等比数列,a1=3,a4=81,若数列{bn}满足bn=(n+1)log3an,则{$\frac{1}{{b}_{n}}$}的前n项和Sn=$\frac{n}{n+1}$.

分析 利用等比数列的通项公式可得q,an.再利用对数的运算性质、“裂项求和”方法即可得出.

解答 解:设等比数列{an}的公比为q,a1=3,a4=81,
∴81=3×q3,解得q=3.
∴an=3n
数列{bn}满足bn=(n+1)log3an=n(n+1),
∴$\frac{1}{{b}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
则{$\frac{1}{{b}_{n}}$}的前n项和Sn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
故答案为:$\frac{n}{n+1}$.

点评 本题考查了等比数列的通项公式、“裂项求和”方法、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.(文)对任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,在实数轴R(箭头向右)上[x]是在点x左侧的第一个整数点,当x是整数时[x]就是x.这个函数[x]叫做“取整函数”,它在生产实践中有广泛的应用.那么[log21]+[log22]+[log23]+[log24]+…+[log2512]=3595.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)=\left\{\begin{array}{l}2{x^3}+3{x^2}+1(x≤0)\\{e^{ax}}(x>0)\end{array}\right.$在[-2,3]上的最大值为2,则实数a的取值范围是(  )
A.$[\frac{1}{3}ln2,+∞)$B.$[0,\frac{1}{3}ln2]$C.(-∞,0]D.$(-∞,\frac{1}{3}ln2]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知集合A={x|y=$\sqrt{{x}^{2}-5x-14}$},B={x|m+1≤x≤2m+1}.若A∪B=A,求实数m的取值范围;
(2)若函数y=f(x)的值域是[$\frac{1}{4}$,4],求函数y=f(x)-2$\sqrt{f(x)}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f1(x)=sinx+cosx,记${f_2}(x)={f_1}'(x),{f_3}(x)={f_2}'(x),…,{f_n}(x)={f_{n-1}}'(x),(n∈{N^*},n≥2)$,则${f_1}(\frac{π}{2})+{f_2}(\frac{π}{2})+…+{f_{2015}}(\frac{π}{2})$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)={log_2}(1+\frac{1}{x})$.
(1)求使f(x)>1的x的取值范围;
(2)计算f(1)+f(2)+…+f(127)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设等差数列{an}的前n项和为Sn,其公差为-1,若S1,S2,S4成等比数列,则a1=(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知{an}为等差数列,a1+a3=2,则a2等于(  )
A.-1B.1C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于1.

查看答案和解析>>

同步练习册答案