¶¨Òå±ä»»T£º
cos¦È•x+sin¦È•y=x¡ä
¡äsin¦È•x-cos¦È•y=y¡ä
¿É°ÑƽÃæÖ±½Ç×ø±êϵÉϵĵãP£¨x£¬y£©±ä»»µ½ÕâһƽÃæÉϵĵãP¡ä£¨x¡ä£¬y¡ä£©£®ÌرðµØ£¬ÈôÇúÏßMÉÏÒ»µãP¾­±ä»»¹«Ê½T±ä»»ºóµÃµ½µÄµãP'ÓëµãPÖغϣ¬Ôò³ÆµãPÊÇÇúÏßMÔڱ任TϵIJ»¶¯µã£®
£¨1£©ÈôÍÖÔ²CµÄÖÐÐÄΪ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÇÒ½¹¾àΪ2
2
£¬³¤ÖᶥµãºÍ¶ÌÖᶥµã¼äµÄ¾àÀëΪ2£®Çó¸ÃÍÖÔ²CµÄ±ê×¼·½³Ì£®²¢Çó³öµ±¦È=arctan
3
4
ʱ£¬ÆäÁ½¸ö½¹µãF1¡¢F2¾­±ä»»¹«Ê½T±ä»»ºóµÃµ½µÄµãF1¡äºÍF2¡äµÄ×ø±ê£»
£¨2£©µ±¦È=arctan
3
4
ʱ£¬Çó£¨1£©ÖеÄÍÖÔ²CÔڱ任TϵÄËùÓ⻶¯µãµÄ×ø±ê£»
£¨3£©ÊÔ̽¾¿£ºÖÐÐÄΪ×ø±êÔ­µã¡¢¶Ô³ÆÖáΪ×ø±êÖáµÄË«ÇúÏßÔڱ任T£º
cos¦È•x+sin¦È•y=x¡ä
¡äsin¦È•x-cos¦È•y=y¡ä
£¨¦È¡Ù
k¦Ð
2
£¬k¡ÊZ£©ÏµIJ»¶¯µãµÄ´æÔÚÇé¿öºÍ¸öÊý£®
·ÖÎö£º£¨1£©ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬Çó³öc£¬a£¬bÈ»ºó½áºÏ¶¨Òå±ä»»T£¬Çó³öµãF1¡äºÍF2¡äµÄ×ø±ê£®
£¨2£©¦È=arctan
3
4
ʱ£¬ÀûÓã¨1£©ÖеÄÍÖÔ²CÔڱ任TÏ£¬µãP£¨x£¬y£©¡ÊC£¬¸ù¾ÝÍÖÔ²·½³ÌÇó³öµÄ²»¶¯µãµÄ×ø±ê£»
£¨3£©ÉèP£¨x£¬y£©ÊÇË«ÇúÏßÔڱ任ϵIJ»¶¯µã£¬ÍƳö
y
x
=
1-cos¦È
sin¦È
=
sin¦È
1+cos¦È
=tan
¦È
2
£¬ÉèË«ÇúÏß·½³ÌΪ
x2
m
+
y2
n
=1
£¨mn£¼0£©£¬y=tan
¦È
2
x
´úÈ룬ÍƳö
n+mtan2
¦È
2
mn
x2=1
 ÌÖÂÛmn£¼0£¬¹Êµ±n+mtan2
¦È
2
=0
ʱ£¬·½³Ì
n+mtan2
¦È
2
mn
x2=1
Î޽⣻
µ±n+mtan2
¦È
2
¡Ù0
ʱ£¬ÒªÊ¹²»¶¯µã´æÔÚ£¬ÔòÐèx2=
mn
n+mtan2
¦È
2
£¾0
£¬
ÒòΪmn£¼0£¬¹Êµ±n+mtan2
¦È
2
£¼0
ʱ£¬Ë«ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£¬·ñÔò²»´æÔÚ²»¶¯µã£®
½øÒ»²½·ÖÀࣺ
£¨i£©µ±n£¼0£¬m£¾0ÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£»
£¨ii£©µ±n£¾0£¬m£¼0ʱ£¬Ë«ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£®
½â´ð£º½â£º£¨1£©ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©£¬
ÓÉÍÖÔ²¶¨ÒåÖª½¹¾à2c=2
2
?c=
2
£¬¼´a2-b2=2¢Ù£®
ÓÖÓÉÌõ¼þµÃa2+b2=4¢Ú£¬¹ÊÓÉ¢Ù¡¢¢Ú¿É½âµÃa2=3£¬b2=1£®
¼´ÍÖÔ²CµÄ±ê×¼·½³ÌΪ
x2
3
+y2=1
£®
ÇÒÍÖÔ²CÁ½¸ö½¹µãµÄ×ø±ê·Ö±ðΪF1(-
2
£¬0)
ºÍF1(
2
£¬0)
£®
¶ÔÓڱ任T£º
cos¦È•x+sin¦È•y=x¡ä
¡äsin¦È•x-cos¦È•y=y¡ä
£¬µ±¦È=arctan
3
4
ʱ£¬
¿ÉµÃ
4
5
x+
3
5
y=x¡ä
3
5
x-
4
5
y=y¡ä

ÉèF1¡ä£¨x1£¬y1£©ºÍF2¡ä£¨x2£¬y2£©·Ö±ðÊÇÓÉF1(-
2
£¬0)
ºÍF1(
2
£¬0)
µÄ×ø±êÓɱ任¹«Ê½T±ä»»µÃµ½£®ÓÚÊÇ£¬
x1=
4
5
•(-
2
)+
3
5
•0=-
4
2
5
y1=
3
5
•(-
2
)-
4
5
•0=-
3
2
5
£¬¼´F1¡äµÄ×ø±êΪ(-
4
2
5
£¬-
3
2
5
)
£»
ÓÖ
x2=
4
5
2
+
3
5
•0=
4
2
5
y2=
3
5
2
-
4
5
•0=
3
2
5
¼´F2¡äµÄ×ø±êΪ(
4
2
5
£¬
3
2
5
)
£®
£¨2£©ÉèP£¨x£¬y£©ÊÇÍÖÔ²CÔڱ任TϵIJ»¶¯µã£¬Ôòµ±¦È=arctan
3
4
ʱ£¬
ÓÐ
4
5
x+
3
5
y=x
3
5
x-
4
5
y=y
?x=3y£¬ÓɵãP£¨x£¬y£©¡ÊC£¬¼´P£¨3y£¬y£©¡ÊC£¬
µÃ£º
(3y)2
3
+y2=1
y=¡À
1
2
x=3y
£¬Òò¶øÍÖÔ²
µÄ²»¶¯µã¹²ÓÐÁ½¸ö£¬·Ö±ðΪ(
3
2
£¬
1
2
)
ºÍ(-
3
2
£¬-
1
2
)
£®
£¨3£©ÉèP£¨x£¬y£©ÊÇË«ÇúÏßÔڱ任
ϵIJ»¶¯µã£¬ÔòÓÉ
cos¦È•x+sin¦È•y=xsin¦È•x-cos¦È•y=y
?
sin¦È•y=(1-cos¦È)•xsin¦È•x=(1+cos¦È)•y

ÒòΪ¦È¡Ù
k¦Ð
2
£¬k¡ÊZ£¬¹Ê
y
x
=
1-cos¦È
sin¦È
=
sin¦È
1+cos¦È
=tan
¦È
2
£®
²»·ÁÉèË«ÇúÏß·½³ÌΪ
x2
m
+
y2
n
=1
£¨mn£¼0£©£¬ÓÉy=tan
¦È
2
x
´úÈëµÃ
ÔòÓÐ
x2
m
+
(tan
¦È
2
•x)
2
n
=1?
n+mtan2
¦È
2
mn
x2=1
£¬
ÒòΪmn£¼0£¬¹Êµ±n+mtan2
¦È
2
=0
ʱ£¬·½³Ì
n+mtan2
¦È
2
mn
x2=1
Î޽⣻
µ±n+mtan2
¦È
2
¡Ù0
ʱ£¬ÒªÊ¹²»¶¯µã´æÔÚ£¬ÔòÐèx2=
mn
n+mtan2
¦È
2
£¾0
£¬
ÒòΪmn£¼0£¬¹Êµ±n+mtan2
¦È
2
£¼0
ʱ£¬Ë«ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£¬·ñÔò²»´æÔÚ²»¶¯µã£®
½øÒ»²½·ÖÀà¿ÉÖª£º
£¨i£©µ±n£¼0£¬m£¾0ʱ£¬¼´Ë«ÇúÏߵĽ¹µãÔÚ
ÖáÉÏʱ£¬?n+mtan2
¦È
2
£¼0?tan2
¦È
2
£¼-
n
m
£»
´Ëʱ˫ÇúÏßÔڱ任
ÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£»
£¨ii£©µ±n£¾0£¬m£¼0ʱ£¬¼´Ë«ÇúÏߵĽ¹µãÔÚyÖáÉÏʱ£¬?n+mtan2
¦È
2
£¼0?tan2
¦È
2
£¾-
n
m
£¾0
£®
´Ëʱ˫ÇúÏßÔڱ任TÏÂÒ»¶¨ÓÐ2¸ö²»¶¯µã£®
µãÆÀ£º±¾Ì⿼²é½âÍÖÔ²µÄÓ¦Óã¬ÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ª»¯Ë¼Ï룬¼ÆËãÄÜÁ¦£¬·ÖÀàÌÖÂÛ˼Ï룬ÊÇÄÑÌ⣬´´ÐÂÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

ͬ²½Á·Ï°²á´ð°¸