精英家教网 > 高中数学 > 题目详情
如图,三棱柱的侧棱与底面垂直,底面是等腰直角三角形,,侧棱分别是的中点,点在平面上的射影是的垂心

(1)求证:
(2)求与平面所成角的大小.
(1)证明略(2)

试题分析:(Ⅰ)通过线面垂直找到,所以平面,所以;(Ⅱ)通过向量法解题,先建系写出各点坐标,求平面的一个法向量,然后求,所以求出与平面所成角的为.
试题解析:(Ⅰ)∵点在平面上的射影是的垂心.连结,则,又平面,∴平面,∴.          (5分)
(Ⅱ)以点为坐标原点,分别以射线轴、轴、轴建立空间直角坐标系。
设点的坐标为,则点. (6分)
由(Ⅰ)知,又.
可得 (8分)
.

设平面求的一个法向量

 (10分)
,
所以与平面所成角的为.                              (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,,D是AC的中点.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面,四边形中,.
(Ⅰ)求证:平面平面
(Ⅱ)设
(ⅰ) 若直线与平面所成的角为,求线段的长;
(ⅱ) 在线段上是否存在一个点,使得点到点的距离都相等?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(Ⅰ)证明:平面
(Ⅱ)证明:∥平面
(Ⅲ)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的体积为(  )
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形中,

(1)点的中点,点的中点,将分别沿折起,使两点重合于点。求证:
(2)当时,求三棱锥的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,现将梯形沿CB、DA折起,使,得一简单组合体如图2示,已知分别为的中点.
   
图1                              图2
(1)求证:平面
(2)求证:
(3)当多长时,平面与平面所成的锐二面角为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:

(1)B,C,H,G四点共面;
(2)平面EFA1∥平面BCHG.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体的棱线长为1,面对角线上有两个动点E,F,且,则下列四个结论中① ②平面 ③三棱锥的体积为定值 ④异面直线所成的角为定值,其中正确的个数是
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案