精英家教网 > 高中数学 > 题目详情

设点M(x,y)到直线x=4的距离与它到定点(1,0)的距离之比为2,并记点M的轨迹曲线为C.

  (Ⅰ)求曲线C的方程;

(Ⅱ)设过定点(0,2)的直线l与曲线C交于不同的两点E,F,且∠EOF=90°(其中O为坐标原点),求直线l的斜率k的值;

  (Ⅲ)设A(2,0),B(0,)是曲线C的两个顶点,直线y=mx(m>0)与线段AB相交于点D,与椭圆相交于E,F两点.求四边形AEBF面积的最大值。

解:(Ⅰ)设曲线上的任意一点

则有化简得: …………………………4分

(Ⅱ)设直线的方程为,与椭圆的交点

,……………………………………6分

因为与椭圆交于不同的两点=90

,

 

解得:(满足)……………………………………8分

(Ⅲ) 解方程组得;

,

………………………10分

因为所以(当且仅当时取等号)

的最大面积为(当时取等号) …………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点M(x,y)到直线x=4的距离与它到定点(1,0)的距离之比为2,并记点M的轨迹曲线为C.
(I)求曲线C的方程;
(II)设过定点(0,2)的直线l与曲线C交于不同的两点E,F,且∠EOF=90°(其中O为坐标原点),求直线l的斜率k的值;
(III)设A(2,0),B(0,
3
)是曲线C的两个顶点,直线y=mx(x>0)与线段AB相交于点D,与椭圆相交于E,F两点,求四边形AEBF面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌一模)设点M(x,y)到直线x=4的距离与它到定点(2,0)的距离之比为
2
,并记点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点(2,0)作直线l与曲线C相交于A、B两点,问C上是否存在点P,使得
OP
=
OA
+
OB
成立?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)设点P(x,y)到直线x=2的距离与它到定点(1,0)的距离之比为
2
,并记点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设M(-2,0)的,过点M的直线l与曲线C相交于E,F两点,当线段EF的中点落在由四点C1(-1,0),C2(1,0),B1(0,-1),B2(0,1)构成的四边形内(不包括边界)时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年河南省新乡、许昌、平顶山高考数学一模试卷(理科)(解析版) 题型:解答题

设点M(x,y)到直线x=4的距离与它到定点(2,0)的距离之比为,并记点M的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点(2,0)作直线l与曲线C相交于A、B两点,问C上是否存在点P,使得=+成立?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年河南省普通高中高考适应性测试数学试卷(文科)(解析版) 题型:解答题

设点M(x,y)到直线x=4的距离与它到定点(1,0)的距离之比为2,并记点M的轨迹曲线为C.
(I)求曲线C的方程;
(II)设过定点(0,2)的直线l与曲线C交于不同的两点E,F,且∠EOF=90°(其中O为坐标原点),求直线l的斜率k的值;
(III)设A(2,0),B(0,)是曲线C的两个顶点,直线y=mx(x>0)与线段AB相交于点D,与椭圆相交于E,F两点,求四边形AEBF面积的最大值.

查看答案和解析>>

同步练习册答案