精英家教网 > 高中数学 > 题目详情
17.已知直线x+ay-1=0和直线ax+4y+2=0互相平行,则a的取值是(  )
A.2B.±2C.-2D.0

分析 由直线的平行关系可得1×4-a•a=0,解得a值排除重合可得.

解答 解:∵直线x+ay-1=0和直线ax+4y+2=0互相平行,
∴1×4-a•a=0,解得a=2或a=-2,
经验证当a=-2时两直线重合,应舍去
故选:A

点评 本题考查直线的一般式方程和平行关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,点M在边BC上,且2$\overrightarrow{BM}$=3$\overrightarrow{MC}$,E在边AC上,且$\overrightarrow{EC}$=3$\overrightarrow{AE}$,则向量$\overrightarrow{EM}$-$\overrightarrow{AB}$=(  )
A.$\frac{7}{20}$$\overrightarrow{AC}$-$\frac{3}{5}$$\overrightarrow{AB}$B.$\frac{7}{20}$$\overrightarrow{AC}$+$\frac{2}{5}$$\overrightarrow{AB}$C.$\frac{2}{5}$$\overrightarrow{AC}$-$\frac{3}{5}$$\overrightarrow{AB}$D.$\frac{1}{3}$$\overrightarrow{AC}$+$\frac{1}{5}$$\overrightarrow{AB}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.以椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦点为顶点,顶点为焦点的双曲线渐近线方程是(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{3}$xC.y=±$\frac{\sqrt{3}}{2}$xD.y=±$\frac{2\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点A(5,0),过抛物线y2=4x上一点P的直线与直线x=-1垂直且交于点B,若|PB|=|PA|,则cos∠APB=(  )
A.0B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为A,右焦点为F,椭圆C上存在点P使线段OP被直线AF平分,则椭圆C的离心率的取值范围是$(0,\frac{\sqrt{3}}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆M:(x-a)2+(y-4)2=r2(r>0)过点O(0,0),A(6,0).
(Ⅰ)求a,r的值;
(Ⅱ)若圆M截直线4x+3y+m=0所得弦的弦长为6,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知m,n∈N*且n>m,在公比为q的等比数列{an}中,有an=am•qn-m成立,类似地,在公差为d的等差数列{bn}中,有bn=bm+(n-m)d成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C过点A(1,4),B(3,2),且圆心在x轴上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=x2+|4x-a|(a为常数).若f(x)的最小值为6,则a的值为-10或10.

查看答案和解析>>

同步练习册答案