精英家教网 > 高中数学 > 题目详情
已知在4支不同编号的枪中有3支已经试射校正过,1支未经试射校正.某射手若使用其中校正过的枪,每射击一次击中目标的概率为
4
5
;若使用其中未校正的枪,每射击一次击中目标的概率为
1
5
,假定每次射击是否击中目标相互之间没有影响.
(I)若该射手用这3支已经试射校正过的枪各射击一次,求目标被击中的次数为奇数的概率;
(II)若该射手用这4支抢各射击一次,设目标被击中的次数为ξ,求随机变量ξ的分布列和数学期望Eξ.
(I)记“该射手用这3支已经试射校正过的枪各射击一次,目标被击中的次数为i”为事件Ai(i=0,1,2,3),且彼此互斥;记“该射手用这3支已经试射校正过的枪各射击一次,目标被击中的次数为奇数”为事件B.
∵P(A1)=
C13
(
4
5
)
1
(
1
5
)
2
=
12
125
,P(A3)=
C33
(
4
5
)
3
=
64
125

∴P(B)=P(A1)+P(A3)=
12
125
+
64
125
=
76
125

答:目标被击中的次数为奇数的概率为
76
125

(II)ξ可能的取值为0,1,2,3,4
∵P(ξ=0)=
C03
(
1
5
)
3
×
4
5
=
4
625

P(ξ=1)=
C13
4
5
×(
1
5
)
2
×
4
5
+
C03
(
1
5
)
3
×
1
5
=
49
625

P(ξ=2)=
C23
(
4
5
)
2
× 
1
5
×
4
5
+
C13
4
5
×(
1
5
)
2
×
1
5
=
204
625

P(ξ=3)=
C33
(
4
5
)
3
×
4
5
+
C23
(
4
5
)
2
×
1
5
×
1
5
=
304
625

P(ξ=4)=
C33
(
4
5
)
3
×
1
5
=
64
625

∴ξ的分布列为
 ξ  0  1  2  3  4
 P   
4
625
 
49
625
 
204
625
 
304
625
 
64
625
∴Eξ=0×
4
625
+1×
49
625
+2×
204
625
+3×
304
625
+4×
64
625
=
13
5

答:随机变量ξ的数学期望为
13
5
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•成都一模)已知在4支不同编号的枪中有3支已经试射校正过,1支未经试射校正.某射手若使用其中校正过的枪,每射击一次击中目标的概率为
4
5
;若使用其中未校正的枪,每射击一次击中目标的概率为
1
5
,假定每次射击是否击中目标相互之间没有影响.
(I)若该射手用这3支已经试射校正过的枪各射击一次,求目标被击中的次数为奇数的概率;
(II)若该射手用这4支抢各射击一次,设目标被击中的次数为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市高考数学一模试卷(文科)(解析版) 题型:解答题

已知在4支不同编号的枪中有3支已经试射校正过,1支未经试射校正.某射手若使用其中校正过的枪,每射击一次击中目标的概率为;若使用其中未校正的枪,每射击一次击中目标的概率为,假定每次射击是否击中目标相互之间没有影响.
(I)若该射手用这3支已经试射校正过的枪各射击一次,求目标被击中的次数为奇数的概率;
(II)若该射手用这4支抢各射击一次,设目标被击中的次数为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市高考数学一模试卷(理科)(解析版) 题型:解答题

已知在4支不同编号的枪中有3支已经试射校正过,1支未经试射校正.某射手若使用其中校正过的枪,每射击一次击中目标的概率为;若使用其中未校正的枪,每射击一次击中目标的概率为,假定每次射击是否击中目标相互之间没有影响.
(I)若该射手用这3支已经试射校正过的枪各射击一次,求目标被击中的次数为奇数的概率;
(II)若该射手用这4支抢各射击一次,设目标被击中的次数为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

同步练习册答案