精英家教网 > 高中数学 > 题目详情
如果函数y=
1
3
x3+
1
2
ax2+x+b
有单调递减区间,则(  )
A.
a2≥4
b∈R
B.
a2≤4
b<0
C.
a2<4
b>0
D.
a2>4
b∈R
y′=x2+ax+1,
因为函数y=
1
3
x3+
1
2
ax2+x+b
有单调递减区间,
所以y′=x2+ax+1<0有解,
所以△=a2-4>0
即a2>4
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=-
1
3
x
3
 
+b
x
2
 
+cx+bc
,其导函数f′(x).
(1)如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值;
(2)设当x∈(0,1)时,函数y=f(x)-c(x+b)的图象上任一点P处的切线斜率为k,若k≤1,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数y=
1
3
x3+
1
2
ax2+x+b
有单调递减区间,则(  )
A、
a2≥4
b∈R
B、
a2≤4
b<0
C、
a2<4
b>0
D、
a2>4
b∈R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
4
x4+
1
3
x3+
1
2
ax2+b
x+c.
(1)如果b=0,且f(x)在x=1时取得极值,求a的值,并指出这个极值是极大值还是极小值,说明理由;
(2)当a=-1时,如果函数y=f(x)的图象上有三个不同点处的切线与直线x+2y+3=0垂直,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业为了保护环境,发展低碳经济,在国家科研部门的支持下,进行技术攻关,新上了一项把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量z(吨)之间的函数关系可近似的表示为:y=
1
3
x3-80x2+5040x,x∈[120,144)
1
2
x2-200x+80000,x∈[144,500)

且每处理一二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,亏损数额国家将给予补偿.
(I)当x∈[200,300]时,判断该项目能否获利?如果亏损,则国家每月补偿数额的范围是多少?
(Ⅱ)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

同步练习册答案