精英家教网 > 高中数学 > 题目详情

在△ABC中,设角ABC的对边分别为abc,且

1)求角A的大小;

2)若,求边c的大小.

 

【答案】

1;(2

【解析】

试题分析:(1)解三角形问题,一般利用正弦定理或余弦定理将边统一为角或将角统一为边,如用正弦定理将化为角也可用余弦定理将化为边,在统一为角后,再利用诱导公式将三个角化为两个角,结合两角和与差公式将两个角化为所求角;在统一为边后,再利用余弦定理或勾股定理求对应角,(2)结合(1)知,所求问题为已知一角两边,求第三边,显然用余弦定理比较直接.

试题解析:1)用正弦定理,由

2

4

6

8

2)用余弦定理,得

12

14

考点:解三角形,正弦定理,余弦定理.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,且
cosC
cosB
=
3a-c
b

(1)求sinB的值;
(2)若b=4
2
,且a=c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A,B,C的对边分别为a,b,c,已知b2-bc-2c2=0,a=
6
cosA=
7
8
,则b=(  )
A、2B、4C、3D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)在△ABC中,设角A、B、C所对的边分别是a、b、c,若b2+c2=a2+
2
bc
,且a=
2
b
,则∠C=
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.
(I)求角C的大小;
(Ⅱ)若c=
3
,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,且
a
cosA
=
b
cosB
,则△ABC一定是(  )

查看答案和解析>>

同步练习册答案