精英家教网 > 高中数学 > 题目详情
(2013•四川)lg
5
+lg
20
的值是
1
1
分析:直接利用对数的运算性质求解即可.
解答:解:lg
5
+lg
20
=lg
100
=1.
故答案为:1.
点评:本题考查对数的运算性质,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•四川)已知圆C的方程为x2+(y-4)2=4,点O是坐标原点.直线l:y=kx与圆C交于M,N两点.
(Ⅰ)求k的取值范围;
(Ⅱ)设Q(m,n)是线段MN上的点,且
2
|OQ|2
=
1
|OM|2
+
1
|ON|2
.请将n表示为m的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.
(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1
(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P(
4
3
1
3
)

(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且
2
|AQ|2
=
1
|AM|2
+
1
|AN|2
,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•四川)如图,在三棱柱ABC-A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1-QC1D的体积.(锥体体积公式:V=
13
Sh
,其中S为底面面积,h为高)

查看答案和解析>>

同步练习册答案