精英家教网 > 高中数学 > 题目详情

已知数列的前项和为,若

⑴证明数列为等差数列,并求其通项公式;

⑵令,①当为何正整数值时,:②若对一切正整数,总有,求的取值范围.

 

【答案】

(1)证明详见解析,;(2)①,②.

【解析】

试题分析:(1)关于的递推式,一般有两种方法可解决,1:转化为项的递推式,根据递推式 直接求通项公式,2:转化为的递推关系,先求,再求通项公式,该题已知数列前n项和的递推关系,由可的的关系,然后由等差数列定义证明,知道等差数列后再求通项公式;

(2)①将代入不等式,解不等式可得,②恒成立问题往往可以采取参变分离的方法,的形式,最后转化为求函数最值,即,该题可转化为求的最大值问题,求的最大值可以结合函数的函数或者单调性处理,但是注意定义域.

试题解析:(1)令,即,由

  ∵,∴

即数列是以2为首项,2为公差的等差数列, ∴ 

 (2)①,即   ②∵,又∵时,

∴各项中数值最大为,∵对一切正整数,总有恒成立,因此.

考点:1、等差数列的定义和通项公式;2、恒成立问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分14分)

已知数列的前项和为,若

(Ⅰ)求证是等差数列,并求出的表达式;

(Ⅱ) 若,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列的前项和为,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?

查看答案和解析>>

科目:高中数学 来源:2011届福建省龙岩市高三上学期期末考试数学理卷(非一级校) 题型:解答题

(本题满分13分)
已知数列的前项和为,满足.
(Ⅰ)证明:数列为等比数列,并求出
(Ⅱ)设,求的最大项.

查看答案和解析>>

科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题

(本小题14分)已知数列{}的前项和为,且=);=3
),
(1)写出;
(2)求数列{},{}的通项公式
(3)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2015届广东省高一下学期期中数学试卷(解析版) 题型:解答题

已知数列的前项和为,且

(1)求数列的通项公式;

(2)令,数列的前项和为,若不等式 对任意恒成立,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案