精英家教网 > 高中数学 > 题目详情
20.已知数列{an}的前n项和Sn=n2-2n,则a2+a18=34.

分析 由已知条件利用公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$求解.

解答 解:∵数列{an}的前n项和Sn=n2-2n,
∴a2+a18=(S2-S1)+(S18-S17
=[(4-4)-(1-2)]+((182-2×18)-(172-2×17)]=34.
故答案为:34.

点评 本题考查数列的两项和的求法,是基础题,解题时要认真审题,注意公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若直线x+2y-2=0与椭圆mx2+ny2=1交于点C,D,点M为CD的中点,直线OM(O为原点)的斜率为$\frac{1}{2}$,且OC⊥OD,则m+n=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=log2[$\sqrt{2}$sin(2x-$\frac{π}{3}$)]+$\sqrt{2-{x}^{2}}$的定义域为$[-\sqrt{2},-\frac{π}{3})∪(\frac{π}{6},\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“点P(tanα,cosα)在第二象限”是“角α的终边在第四象限”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.空间四边形OABC各边以及AC、BO的长都是1,点D、E分别是边OA,BC的中点,连接DE.
(1)求直线AC与OB所成角;
(2)计算DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆M:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且椭圆的长轴长为4.
(1)求椭圆M的方程;
(2)若直线y=$\sqrt{2}$x+m交椭圆M于A,B两点,P(1,$\sqrt{2}$)为椭圆M上一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,正方形ABCD边长为2,E、F分别为AD、CD的中点,沿EF将正方形ABCD剪成两片,将这样的图片对接在正六边形各边上,如图所示,再将所得图片沿虚线折起,围成一个几何体,则此几何体的体积(  )
A.3B.4C.3$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)对任意非负实数a.b恒成立,则正数λ的取值范围为(  )
A.(0,1]B.(0,$\frac{\sqrt{6}}{2}$]C.(0,$\sqrt{2}$]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-2ax+b(a>0)在区间[-1,4]上有最大值10和最小值1.设g(x)=$\frac{f(x)}{x}$.
(1)求a、b的值;
(2)证明:函数g(x)在[$\sqrt{b}$,+∞)上是增函数;
(3)若不等式g(2x)-k•2x≥0在x∈[-1,1]上有解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案