精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆的焦点重合,它们的离心率之和为,求双曲线的方程.
【答案】分析:设出双曲线方程,求出椭圆的离心率,可得双曲线的离心率,即可确定双曲线的几何性质,从而可得双曲线的方程.
解答:解:设双曲线的方程为(a>0,b>0)(3分)
椭圆的半焦距,离心率为,(6分)
两个焦点为(4,0)和(-4,0)(9分)
∴双曲线的两个焦点为(4,0)和(-4,0),离心率
,∴a=2(12分)
∴b2=c2-a2=12(14分)
∴双曲线的方程为(15分)
点评:本题双曲线的标准方程,考查椭圆、双曲线的几何性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年贵州省高三第一次月考文科数学 题型:解答题

(本小题满分12分)已知椭圆的方程为 ,双曲线的左、右焦

 

点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点.

(1)求双曲线的方程;                                             

(2)若直线与双曲线C2恒有两个不同的交点A和B,求的范围。

 

查看答案和解析>>

同步练习册答案