精英家教网 > 高中数学 > 题目详情
如图,单位圆O中,
OA
OB
是两个给定的夹角为120°的向量,P为单位圆上一动点,设
OP
=m
OA
+n
OB
,则设m+n的最大值为M,最小值为N,则M-N的值为(  )
分析:根据题意,建立坐标系,设出A,B点的坐标,并设∠AOC=α,则向量
OC
=(cosα,sinα)
,且
OC
=m
OA
+n
OB
,由向量相等,得m,ny的值,从而求得m+n的最值.
解答:解:建立如图所示的坐标系,则A(1,0),B(cos120°,sin120°),即B(-
1
2
3
2
). 
设∠AOC=α,则
OC
=(cosα,sinα).∵
OC
=m
OA
+n
OB
=(m,0)+(-
n
2
3
2
n)=(cosα,sinα),α∈[0,2π).
n∴
m-
n
2
=cosα
3
2
n=sinα
,∴
m=
sinα
3
+ cosα
n=
2sinα
3
,∴m+n=
3
sinα+cosα=2sin(α+30°).
∵0°≤α≤360°.∴30°≤α+30°≤450°,故当α=60°时,m+n有最大值2;当α=240°时,m+n有最小值为-2,
∴M=2,N=-2.∴M-N=4,
故选:C.
点评:本题是向量的坐标表示的应用,结合图形,利用三角函数的性质,容易求出结果.
练习册系列答案
相关习题

科目:高中数学 来源:山西省忻州一中2012届高三上学期期中考试数学理科试题 题型:013

如图,单位圆O中,是两个给定的夹角为120°的向量,P为单位圆上一动点,设=m+n,且设m+n的最大值为M,最小值为N,则M-N的值为

[  ]
A.

2

B.

2

C.

4

D.

2

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)11月月考数学试卷(文科)(解析版) 题型:选择题

如图,单位圆O中,是两个给定的夹角为120°的向量,P为单位圆上一动点,设,则设m+n的最大值为M,最小值为N,则M-N的值为( )

A.2
B.
C.4
D.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西省忻州一中高三(上)期中数学试卷(理科)(解析版) 题型:选择题

如图,单位圆O中,是两个给定的夹角为120°的向量,P为单位圆上一动点,设,则设m+n的最大值为M,最小值为N,则M-N的值为( )

A.2
B.
C.4
D.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)11月月考数学试卷(理科)(解析版) 题型:选择题

如图,单位圆O中,是两个给定的夹角为120°的向量,P为单位圆上一动点,设,则设m+n的最大值为M,最小值为N,则M-N的值为( )

A.2
B.
C.4
D.

查看答案和解析>>

同步练习册答案