精英家教网 > 高中数学 > 题目详情
如图,椭圆E:=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.

(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
(1)=1(2)存在定点M(1,0),
学生错解:解:(1)略
(2)由消去y得(4k2+3)x2+8kmx+4m2-12=0.
因为动直线l与椭圆E有且只有一个公共点P(x0,y0),所以m≠0且Δ=0,
即64k2m2-4(4k2+3)(4m2-12)=0,化简得4k2-m2+3=0.(*)
此时x0=-=-,y0=kx0+m=,所以P.
得Q(4,4k+m).
假设平面内存在定点M满足条件,由图形对称性知,点M必在x轴上.
设M(x10),则·=0对满足(*)式的m,k恒成立.
因为=(4-x14k+m),
·=0,得--4x1+3=0,
整理,得(4x1-4)-4x1+3=0.(**),方程无解.
故不存在定点M,使得以PQ为直径的圆恒过点M.
审题引导:(1)建立方程组求解参数a,b,c;(2)恒成立问题的求解;(3)探索性问题的一般解题思路.
规范解答:解:(1)因为AB+AF2+BF2=8,
即AF1+F1B+AF2+BF2=8,(1分)
又AF1+AF2=BF1+BF2=2a,(2分)
所以4a=8,a=2.又因为e=,即,所以c=1,(3分)
所以b=.故椭圆E的方程是=1.(4分)
(2)由消去y得(4k2+3)x2+8kmx+4m2-12=0.(5分)
因为动直线l与椭圆E有且只有一个公共点P(x0,y0),所以m≠0且Δ=0,(6分)
即64k2m2-4(4k2+3)(4m2-12)=0,化简得4k2-m2+3=0.(*)(7分)
此时x0=-=-,y0=kx0+m=,所以P.(8分)
得Q(4,4k+m).(9分)
假设平面内存在定点M满足条件,由图形对称性知,点M必在x轴上.(10分)
设M(x10),则·=0对满足(*)式的m,k恒成立.
因为=(4-x14k+m),
·=0,得--4x1+3=0,
整理,得(4x1-4)-4x1+3=0.(**)(12分)
由于(**)式对满足(*)式的m,k恒成立,所以解得x1=1.(13分)
故存在定点M(1,0),使得以PQ为直径的圆恒过点M.(14分)
错因分析:本题易错之处是忽视定义的应用;在处理第(2)问时,不清楚圆的对称性,从而不能判断出点M必在x轴上.同时不会利用恒成立求解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(理)已知点是平面直角坐标系上的一个动点,点到直线的距离等于点到点的距离的2倍.记动点的轨迹为曲线.
(1)求曲线的方程;
(2)斜率为的直线与曲线交于两个不同点,若直线不过点,设直线的斜率分别为,求的数值;
(3)试问:是否存在一个定圆,与以动点为圆心,以为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足为坐标原点),当时,求实数的取值范围?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设为坐标原点,点分别在椭圆上,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆的中心在原点O,右焦点F在x轴上,椭圆与y轴交于A、B两点,其右准线l与x轴交于T点,直线BF交椭圆于C点,P为椭圆上弧AC上的一点.

(1)求证:A、C、T三点共线;
(2)如果=3,四边形APCB的面积最大值为,求此时椭圆的方程和P点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C的方程为+y2=1,A、B是四条直线x=±2,y=±1所围成的矩形的两个顶点.

(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦距为2,且过点.
(1)求椭圆C的方程;
(2)设椭圆C的左右焦点分别为,过点的直线与椭圆C交于两点.
①当直线的倾斜角为时,求的长;
②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1,F2是椭圆=1的左、右两个焦点,若椭圆上满足PF1⊥PF2的点P有且只有两个,则离心率e的值为(   )
A.B.C.D..

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆=1的离心率为________.

查看答案和解析>>

同步练习册答案