分析 当x>0时,-x<0,由已知表达式可求得f(-x),根据奇函数的性质可得f(x)与f(-x)的关系式,求出x>0时的表达式,再验证f(0)=0是否成立,可得答案.
解答 解:当x>0时,-x<0,
∵x<0时,f(x)=x(x+3),
∴f(-x)=(-x)(-x+3),
又f(x)为奇函数,
∴f(x)=-f(-x)=x(-x+3),
∴当x>0时,f(x)=x(-x+3),
又f(0)=0符合上式,
综上得,f(x)=$\left\{\begin{array}{l}{x(x+3),x≤0}\\{x(-x+3),x>0}\end{array}\right.$.
点评 本题考查函数解析式的求解及函数奇偶性的应用,属基础题,解决该类题目要注意所求解析式对应的x的范围.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M=(N∪P) | B. | M?(N∪P) | C. | M?(N∪P) | D. | M∩(N∪P)=∅ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com