精英家教网 > 高中数学 > 题目详情
设关于x的函数f(x)=4x-2x+1-b(b∈R),
(1)若函数有零点,求实数b的取值范围;
(2)当函数有零点时,讨论零点的个数,并求出函数的零点.
分析:(1)原函数零点即方程)=4x-2x+1-b=0 的根.化简可得 b=4x-2x+1=(2x-1)2-1≥-1,由此可得b的范围.
(2)分①当b=-1 时,②当 0>b>-1 时,③当b≥0时,④当b<-1时四种情况,分别由条件求得2x 的值,求得x的值,从而得出结论.
解答:解:(1)原函数零点即方程)=4x-2x+1-b=0 的根.
化简方程为b=4x-2x+1=22x-2•2x=(2x-1)2-1≥-1,
故当b的范围为[-1,+∞)时函数存在零点.
(2)①当b=-1 时,2x=1,∴方程有唯一解x=0.
②当 0>b>-1 时,∵(2x-1)2=1+b>0,可得 2x=1+
1+b
,或2x=1-
1+b

解得 x=log2(1+
1+b
)
,或x=log2(1-
1+b
)
,故此时方程有2个解.…(9分)
③当b≥0时,∵(2x-1)2=1+b>1,可得 2x=1+
1+b
,或2x=1-
1+b
(舍去),
解得 x=log2(1+
1+b
)
,故此时方程有唯一解.
④当b<-1时,∵(2x-1)2=1+b<0,2x 无解,原方程无解.
综上可得,1)当-1<b<0时原方程有两解:x=log2(1+
1+b
)
,或x=log2(1-
1+b
)

2)当 b≥0 时,方程有唯一解 x=log2(1+
1+b
)
,当b=-1 时,原方程有唯一解 x=0;
3)当b<-1 时,原方程无解.
点评:本题主要考查函数的零点与方程的根的关系,体现了等价转化和数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年河北省唐山市高二(下)期中数学试卷(文科)(解析版) 题型:解答题

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为实数集R上的常数,函数f(x)在x=1处取得极值0.
(Ⅰ)已知函数f(x)的图象与直线y=k有两个不同的公共点,求实数k的取值范围;
(Ⅱ)设函数,其中p≤0,若对任意的x∈[1,2],总有2f(x)≥g(x)+4x-2x2成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年山东省年高考数学压轴卷(文科)(解析版) 题型:解答题

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为实数集R上的常数,函数f(x)在x=1处取得极值0.
(Ⅰ)已知函数f(x)的图象与直线y=k有两个不同的公共点,求实数k的取值范围;
(Ⅱ)设函数,其中p≤0,若对任意的x∈[1,2],总有2f(x)≥g(x)+4x-2x2成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源:江西省月考题 题型:解答题

设关于x的函数f(x)=mx2﹣(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.
(1)求实数m的值;
(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围;
(3)设函数 ,若对任意的x∈[1,2],2f(x)≥g(x)+4x﹣2x2恒成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈市浠水二中高三(上)9月数学滚动试卷(文科)(解析版) 题型:解答题

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.
(1)求实数m的值;
(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围;
(3)设函数,若对任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省荆州中学高三(上)9月质量检查数学试卷(文科)(解析版) 题型:解答题

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为R上的常数,若函数f(x)在x=1处取得极大值0.
(1)求实数m的值;
(2)若函数f(x)的图象与直线y=k有两个交点,求实数k的取值范围;
(3)设函数,若对任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求实数p的取值范围.

查看答案和解析>>

同步练习册答案