精英家教网 > 高中数学 > 题目详情
函数f(x)=cos2x+sin(x+
π
2
)
是(  )
A、非奇非偶函数
B、仅有最小值的奇函数
C、仅有最大值的偶函数
D、既有最大值又有最小值的偶函数
分析:利用诱导公式化简解析式,根据奇(偶)的定义判断函数的奇偶性,由倍角公式和配方法整理解析式,根据余弦函数的值域求出函数的最值.
解答:解:f(x)=cos2x+sin(x+
π
2
)
=cos2x+cosx,
∴f(-x)=cos(-2x)+cos(-x)=cos2x+cosx=f(x),
∴此函数是偶函数,
∵f(x)=cos2x+cosx=2cos2x+cosx-1=2(cosx+1)2-
9
8

∵cosx∈[-1,1],∴f(x)最大值是
55
8
,最小值是-
9
8

故选D.
点评:本题考查了余弦函数的奇偶性和单调性,利用了诱导公式、倍角公式和配方法整理解析式,最后转化为二次函数求最值,考查了转化思想和知识运用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x-
π3
)+sin2x-cos2x

(Ⅰ)求函数f(x)的最小正周期及图象的对称轴方程;
(Ⅱ)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(2x+
π
2
)
是(  )
A、最小正周期为π的偶函数
B、最小正周期为
π
2
的偶函数
C、最小正周期为π的奇函数
D、最小正周期为
π
2
的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中:
①函数f(x)=
1
lgx
在(0,+∞)
是减函数;
②在平面上,到定点(2,-1)的距离与到定直线3x-4y-10=0距离相等的点的轨迹是抛物线;
③设函数f(x)=cos(
3
x+
π
6
)
,则f(x)+f'(x)是奇函数;
④双曲线
x2
25
-
y2
16
=1
的一个焦点到渐近线的距离是5;
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)已知函数f(x)=cos(π-x)sin(
π
2
+x)+
3
sinxcosx

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求当x∈[0,
π
2
]
时,f(x)的最大值及最小值;
(Ⅲ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x+
π
3
)+sin2x

(1)化简f(x);
(2)若不等式f(x)-m<2在x∈[
π
4
π
2
]
上恒成立,求实数m的取值范围;
(3)设A,B,C为△ABC的三个内角,若cosB=
1
3
f(
C
2
)=-
1
4
,求sinA.

查看答案和解析>>

同步练习册答案