设函数
,其中
为常数.
(Ⅰ)当
时,判断函数
在定义域上的单调性;
(Ⅱ)当
时,求
的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数
,不等式
都成立.
(1)当
时,
,函数
在定义域
上单调递增
(2)
时,
有惟一极小值点
,
(3)由(2)可知当
时,函数
,此时
有惟一极小值点
故可以得到函数
借助于单调性来证明不等式。
【解析】
试题分析:解:(1)由题意知,
的定义域为
,
当
时,
,函数
在定义域
上单调递增. …………4分
(2)当
时
有两个不同解,![]()
,
,
此时
,
随
在定义域上的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
|
|
减 |
极小值 |
增 |
由此表可知:
时,
有惟一极小值点
,
………8分
(3)由(2)可知当
时,函数
,
此时
有惟一极小值点![]()
且
…… 11分
令函数![]()
13分
考点:导数的运用
点评:主要是考查了导数在研究函数中的运用,以及函数的极值,以及函数与不等式的综合运用,属于难度题。
科目:高中数学 来源:2014届山西省高三第一学期8月月考理科数学试卷(解析版) 题型:解答题
设函数
,其中
为常数。
(Ⅰ)当
时,判断函数
在定义域上的单调性;
(Ⅱ)若函数
有极值点,求
的取值范围及
的极值点。
查看答案和解析>>
科目:高中数学 来源:2014届山西省高三第一学期8月月考文科数学试卷(解析版) 题型:解答题
设函数
,其中
为常数。
(Ⅰ)当
时,判断函数
在定义域上的单调性;
(Ⅱ)若函数
有极值点,求
的取值范围及
的极值点。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江西省高三10月月考文科数学卷 题型:解答题
设函数
,其中
为常数.
(1)证明:对任意
,
的图象恒过定点;
(2)当
时,判断函数
是否存在极值?若存在,证明你的结论并求出所有
极值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省高三上学期10月月考理科数学卷 题型:解答题
(本小题满分14分)20. (14分)设函数
,其中
为常数.
(1)当
时,判断函数
在定义域上的单调性;
(2)若函数
的有极值点,求
的取值范围及
的极值点;
(3)求证对任意不小于3的正整数
,不等式
都成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com