精英家教网 > 高中数学 > 题目详情
点P是正△ABC所在平面外一点,P在△ABC上的射影是△ABC的中心O,PA与底面所成角为β,侧面PBC与底面成二面角为α,则tanα·cotβ的值为(   )

A.2               B.3              C.              D.

C

解析:设BC的中点为D,易知 α=∠PDO,β=∠PAO,tanα×cotβ=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•重庆二模)已知P是正四面体S-ABC的面SBC上一点,P到面ABC的距离与到点S的距离相等,则动点P的轨迹所在的曲线是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,给出下列四个命题:
①如果PA⊥BC,PB⊥AC,那么点P在平面ABC内的射影是△ABC的垂心;
②如果点P到△ABC的三边所在直线的距离都相等,那么点P在平面ABC内的射影是△ABC的内心;
③如果棱PA和BC所成的角为60?,PA=BC=2,E、F分别是棱PB、AC的中点,那么EF=1;
④三棱锥P-ABC的各棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
1
2

⑤如果三棱锥P-ABC的四个顶点是半径为1的球的内接正四面体的顶点,则P与A两点间的球面距离为π-arccos
1
3

其中正确命题的序号是
①④⑤
①④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区二模)如图,△ABC是边长为1的正三角形,点P在△ABC所在的平面内,且|
PA
|2+|
PB
|2+
|
PC
|2=a
(a为常数).下列结论中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知P是正三棱锥S-ABC的侧面SBC内一点,P到底面ABC的距离与到点S的距离相等,则动点P的轨迹所在的曲线是(    )

A.圆       B.抛物线           C.椭圆                D.双曲线

查看答案和解析>>

同步练习册答案