精英家教网 > 高中数学 > 题目详情

选修4-5:不等式证明选讲
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,求a的取值范围.

解:由柯西不等式得
即2b2+3c2+6d2≥(b+c+d)2…(4分)
将条件代入可得5-a2≥(3-a)2,解得1≤a≤2…(6分)
当且仅当时等号成立,
可知时amax=2,时,amin=1,
所以a的取值范围是[1,2].…(10分)
分析:由柯西不等式得,即2b2+3c2+6d2≥(b+c+d)2,将条件代入,我们就可以求出a的取值范围.
点评:柯西不等式的特点:一边是平方和的积,而另一边为积的和的平方,因此,当欲证不等式的一边视为“积和结构”或“平方和结构”,再结合不等式另一边的结构特点去尝试构造.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选修4-5:不等式证明选讲
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式证明选讲
已知对于任意非零实数m,不等式|2m-1|+|1-m|≥m(|x-1|-|2x+3|)恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(10分)选修4―5 不等式证明选讲

已知是不相等的正实数,求证:

查看答案和解析>>

科目:高中数学 来源:2011年辽宁名校领航高考预测试(六)数学卷 题型:解答题

(本小题满分10分)选修4—5 不等式证明选讲

已知是不相等的正实数,求证:

 

查看答案和解析>>

同步练习册答案