精英家教网 > 高中数学 > 题目详情
如图,在底面是直角梯形的四棱锥P-ABCD中,∠DAB=90°,PA⊥平面 ABCD,PA=AB=BC=1,AD=2,M为PD中点.
( I ) 求证:MC∥平面PAB;
(Ⅱ)在棱PD上找一点Q,使二面角Q-AC-D的正切值为
2
2
分析:(1)欲证MC∥平面PAB,根据线面平行的判定定理可知只需在平面PAB中找一直线与MC平行即可,取PA的中点E,连接BE、EM,根据EM与BC平行且相等,则MC∥BE,又MC?面PAB,BE⊆面PAB,满足定理所需条件;
(2)过Q作QF∥PA交AD于F,作FH⊥AC,H为垂足.连接QH则∠QHF是二面角Q-AC-D的平面角,然后根据二面角Q-AC-D的正切值为
2
2
建立等式关系,解之即可求Q在棱PD上的位置.
解答:解:(1)取PA的中点E,连接BE、EM,则EM与BC平行且相等,∴四边形BCME是平行四边形.∴MC∥BE,
又MC?面PAB,BE⊆面PAB,∴MC∥平面PAB…(6分)
(2)如图过Q作QF∥PA交AD于F,
∴QF⊥平面ABCD.作FH⊥AC,H为垂足.连接QH∴∠QHF是二面角Q-AC-D的平面角.
设AF=x,∴AH=FH=
2
2
x,FD=2-x.又
QF
PA
=
FD
AD
,∴QF=
2-x
2

在Rt△QFH中,tan∠QHF=
QF
FH
=
2-x
2
2
x
2
=
2
2
,∴x=1.
当Q为棱PD中点时,二面角Q-AC-D的正切值为
2
2
.…(12分)
点评:本题主要考查了线面平行的判定,以及二面角的度量,同时考查了空间想象能力和论证推理的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在底面是直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,且∠ADC=arcsin
5
5
,又PA⊥平面ABCD,AD=3AB=3PA=3a,
(I)求二面角P-CD-A的正切值;
(II)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是直角梯形的四棱锥    P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宿州一模)如图,在底面是直角梯形的四棱锥P-ABCD中,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=3,梯形上底AD=1.
(1)求证:BC⊥平面PAB;
(2)求面PCD与面PAB所成锐二面角的正切值;
(3)在PC上是否存在一点E,使得DE∥平面PAB?若存在,请找出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
12

(1)求四棱锥S-ABCD的体积;
(2)求证:面SAB⊥面SBC.

查看答案和解析>>

同步练习册答案