分析 在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项,再根据常数项等于80求得实数a的值,从而求得x${\;}^{\frac{5}{6}}$的系数.
解答 解:∵($\sqrt{x}$+$\frac{a}{\root{3}{x}}$)5的展开式中的通项公式为 Tr+1=${C}_{5}^{r}$•ar•${x}^{\frac{15-5r}{6}}$,令$\frac{15-5r}{6}$=0,求得r=3,
即常数项为${C}_{5}^{3}$•a3=80,求得a=2.
故展开式中的通项公式为 Tr+1=${C}_{5}^{r}$•2r•${x}^{\frac{15-5r}{6}}$,令r=2,可得则x${\;}^{\frac{5}{6}}$的系数为40,
故答案为:40.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{7}}{5}$ | B. | $\frac{\sqrt{7}}{4}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\frac{\sqrt{10}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{5}{2}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{65}{3}$ | B. | $\frac{\sqrt{65}}{3}$ | C. | $\frac{\sqrt{65}}{6}$ | D. | $\frac{65}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±1 | B. | ±$\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | ±$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com