精英家教网 > 高中数学 > 题目详情
设△ABC的内角A,B,C所对的边为a,b,c;则下列命题正确的是______
①若ab>c2;则C<
π
3
;②若a+b>2c;则C<
π
3
;③若(a2+b2)c2<2a2b2;则C>
π
3

④若(a+b)c<2ab;则C>
π
2
;⑤若a3+b3=c3;则C<
π
2
①ab>c2?cosC=
a2+b2-c2
2ab
2ab-ab
2ab
=
1
2
?C<
π
3
,故①正确;
②a+b>2c?cosC═
a2+b2-c2
2ab
4(a2+b2)-(a+b)2
8ab
8ab-4ab
8ab
=
1
2
?C<
π
3
,故②正确;
③取a=b=
2
,c=1,满足(a2+b2)c2<2a2b2,此时有C<
π
3
,故③错误;
④取a=b=2,c=1,满足(a+b)c<2ab得:C<
π
3
π
2
,故④错误;
⑤当C≥
π
2
时,c2≥a2+b2?c3≥ca2+cb2>a3+b3与a3+b3=c3矛盾,故⑤正确;
故答案为:①②⑤
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)与
n
=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C的对边分别为a、b、c.若b=
3
,c=1,B=60°
,则角C=
 
°.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c
(1)求证:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,试求
tanA
tanB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函数f(x)的最大值和最小值,并写出相应的x的值;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,满足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周长;
(2)若直线l:
x
a
+
y
b
=1
恒过点D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步练习册答案