精英家教网 > 高中数学 > 题目详情
(2012•无为县模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=2,b=3,cosC=
13

(Ⅰ)求△ABC的面积;
(Ⅱ)求sin(C-A)的值.
分析:(Ⅰ)利用同角三角函数的基本关系式求出sinC,然后求△ABC的面积;
(Ⅱ)通过余弦定理求出c,利用正弦定理求出sinA,同角三角函数的基本关系式求出cosA,利用两角和的正弦函数求sin(C-A)的值.
解答:(本小题满分13分)
解:(Ⅰ)在△ABC中,因为cosC=
1
3

所以sinC=
1-cos2C
=
1-(
1
3
)
2
=
2
2
3
.          …(2分)
所以,S△ABC=
1
2
ab•sinC=
1
2
×2×3×
2
2
3
=2
2
.    …(5分)
(Ⅱ)由余弦定理可得,c2=a2+b2-2ab•cosC=4+9-2×2×3×
1
3
=9
所以,c=3.              …(7分)
又由正弦定理得,
c
sinC
=
a
sinA

所以,sinA=
a•sinC
c
=
2
2
3
3
=
4
2
9
.    …(9分)
因为a<b,所以A为锐角,
所以,cosA=
1-sin2A
=
1-(
4
2
9
)
2
=
7
9
.       …(11分)
所以,sin(C-A)=sinC•cosA-cosC•sinA=
2
2
3
×
7
9
-
1
3
×
4
2
9
=
10
2
27
. …(13分)
点评:本题考查三角形的解法,正弦定理与余弦定理同角三角函数的基本关系式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•无为县模拟)全称命题:?x∈R,x2>0的否定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•无为县模拟)设集合A={x|
2
x-2
 
<1},B={x|1-x≥0},则A∩B
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•无为县模拟)设数列{an}的前n项和为Sn.已知a1=1,an+1=3Sn+1,n∈N*
(Ⅰ)写出a2,a3的值,并求数列{an}的通项公式;
(Ⅱ)记Tn为数列{nan}的前n项和,求Tn
(Ⅲ)若数列{bn}满足b1=0,bn-bn-1=log2an(n≥2),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•无为县模拟)已知命题p:
2-x2x-1
>1
,命题q:x2+2x+1-m≤0(m>0)若非p是非q的必要不充分条件,那么实数m的取值范围是
[4,+∞)
[4,+∞)

查看答案和解析>>

同步练习册答案