精英家教网 > 高中数学 > 题目详情
已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x),函数f(x)=
m
n

(1)求函数f(x)的最小正周期及单调增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.
分析:(1)利用两个向量的数量积公式化简函数f(x) 的解析式为2sin(
π
6
+2x)+1,由此求得它的最小正周期.
(2)在△ABC中,由f(C)=3求得 C=
π
6
.再利用 c=1,ab=2
3
,且a>b 以及余弦定理求得a,b的值.
解答:解:(1)∵函数f(x)=
m
n
=2cos2x+
3
sin2x=cos2x+
3
sin2x+1=2sin(
π
6
+2x)+1,
故函数的最小正周期等于
2
=π.
令 2kπ-
π
2
π
6
+2x≤2kπ+
π
2
,k∈z,可得kπ-
π
3
≤x≤2kπ+
π
6
,k∈z,故函数f(x)的单调增区间为[kπ-
π
3
,2kπ+
π
6
],k∈z.
(2)在△ABC中,∵f(C)=3=2sin(
π
6
+2C)+1,∴sin(
π
6
+2C)=1,∴C=
π
6

∵c=1,ab=2
3
,且a>b,再由余弦定理可得 1=a2+b2-2ab•cosC,故 a2+b2=7.
解得 a=2,b=
3
点评:本题主要考查两个向量的数量积公式,复合三角函数的周期性、单调性,以及余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(1,1),
q
=(1,0),<
n
p
>=
π
2
m
n
=-1;若△ABC的内角A,B,C依次成等差数列,且A≤B≤C;
(1)若关于x的方程sin(2x+
π
3
)=
m
2
在[0,B]上有相异实根,求实数m的取值范围;
(2)若向量
p
=(cosA,2cos2
C
2
),试求|
n
+
p
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,1),向量
n
与向量
m
的夹角为
4
,且
m
n
=-1

(1)求向量
n

(2)设向量
a
=(1,0),向量
b
=(cosx,2cos2(
π
3
-
x
2
))
,若
a
n
=0,记函数f(x)=
m
•(
n
+
b
)
,求此函数的单调递增区间和对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,1),向量
n
与向量
m
的夹角为
4
,且
m
n
=-1
(1)求向量
n

(2)若向量
n
与向量
q
=(1,0)的夹角为
π
2
,而向量p=(cosx,2cos2(
π
3
-
x
2
))
,其中0<x<
3
,试求|
n
+
p
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cos2(x-
π
6
),sinx),
n
=(1,2sinx)
,函数f(x)=
m
n

(1)求f(x)的最小正周期;
(2)求当x∈[0,
12
]
时函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量
m
=(2cos2(x-
π
6
),sinx),
n
=(1,2sinx)
,函数f(x)=
m
n

(1)求f(x)的最小正周期;
(2)求当x∈[0,
12
]
时函数f(x)的取值范围.

查看答案和解析>>

同步练习册答案