精英家教网 > 高中数学 > 题目详情
20.求下列函数的单调区间:(1)y=sin2x,x∈R:(2)y=sin$\frac{x}{2}$,x∈R:

分析 直接利用正弦函数的单调区间整体代入即可求出结论.

解答 解:(1)因为函数y=sin2x;
令2kπ-$\frac{π}{2}$≤2x≤2kπ+$\frac{π}{2}$⇒kπ-$\frac{π}{4}$≤x≤kπ+$\frac{π}{4}$(k∈Z).
所以函数y=sin2x的单调递增区间:[kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$],k∈Z.
y=sin2x,x∈R的周期为:π,
同理可得,函数的单调减区间为:[kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$],k∈Z.
(2)y=sin$\frac{x}{2}$,x∈R:
令2kπ-$\frac{π}{2}$≤$\frac{x}{2}$≤2kπ+$\frac{π}{2}$⇒4kπ-π≤x≤4kπ+π(k∈Z).
所以函数y=sin$\frac{x}{2}$的单调递增区间:[4kπ-π,4kπ+π],k∈Z.
y=sin$\frac{x}{2}$,x∈R的周期为:4π,
函数的单调减区间为:[4kπ+π,4kπ+3π],k∈Z.

点评 本题主要考查正弦函数的单调性以及整体代入思想,一般再解三角函数的单调区间时,多用整体代入思想来解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知点A(-2,$\sqrt{3}$)为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1内一点,F2为其右焦点,M为椭圆上一动点.
(1)求|AM|+|MF2|的最大值;
(2)求|AM|+2|MF2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若ab>0,则直线ax+by=0倾斜角α的取值范围是(  )
A.0°<α<90°B.90°<α<180°C.0°<α<180°D.45°<α<90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.圆x2+y2+kx-y-9=0与直线y=kx+1有两个交点,且这两个点关于y轴对称,则实数k的值为(  )
A.0B.-1C.1D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(log4x)2-log4x+5,x∈[1,16],求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-k)ex,求f(x)在区间[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,周期为2的奇函数为(  )
A.y=sin2xB.y=cos2πxC.y=cos[2(πx-$\frac{π}{4}$)]-$\frac{1}{2}$D.y=tan$\frac{π}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=$\frac{\sqrt{4+3x-{x}^{2}}}{x-1}$的定义域是{x|-1≤x<1或1<x≤4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=$\sqrt{5-|3-2x|}$的定义域.

查看答案和解析>>

同步练习册答案