精英家教网 > 高中数学 > 题目详情
精英家教网如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是BC1的中点.求直线DE与平面ABCD所成角的大小(结果用反三角函数值表示).
分析:过E作EF⊥BC,交BC于F,连接DF,得到∠EDF是直线DE与平面ABCD所成的角,然后再在三角形EDF中求出此角即可.
解答:解:过E作EF⊥BC,交BC于F,连接DF.
精英家教网
∵EF⊥BC,CC1⊥BC
∴EF∥CC1,而CC1⊥平面ABCD
∴EF⊥平面ABCD,
∴∠EDF是直线DE与平面ABCD所成的角(4分)
由题意,得EF=
1
2
CC1=1.

CF=
1
2
CB=1, ∴DF=
5.
(8分)
∵EF⊥DF,∴tan∠EDF=
EF
DF
=
5
5
.
(10分)
故直线DE与平面ABCD所成角的大小是arctan
5
5
(12分)
点评:本题主要考查了直线与平面之间所成角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体A-BCD中,若以△ABC为视角正面,则其正视图的面积是(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省宁波市慈溪市高三(上)期中数学试卷(文科)(解析版) 题型:选择题

如图,在棱长为2的正四面体A-BCD中,若以△ABC为视角正面,则其正视图的面积是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积为        

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积为        

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为2的正四面体ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的面积为        

 

查看答案和解析>>

同步练习册答案